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In order to design a toxicology study ready for pharmaceutical development, there
are many factors to consider. Despite the referred guidance for the safety
evaluation of various pharmaceutical products, detailed design is dependent on
such factors like the background of the test article, intended clinical use, previous
data and the experience of the team involved in drug discovery. To give an
example, the design of a 4-week rodent study may have elements such as dosing
route and recovery period adjusted due to the data of pilot studies, proposed
clinical design to support and special purposes/parameters included in the
toxicology study. For a GLP toxicology study, healthy animals are typically used but
in some cases, disease animals can be utilized under specific circumstances.

It is important to avoid conducting unnecessary tests, ensuring appropriate
toxicology study design will provide sufficient safety data to help support any
proposed clinical trials, in a cost-effective and timely manner. Experienced
contract research organizations will work closely with sponsors to help design the
study by supplying experience in scientific consideration, strategy planning and
regulatory requirements.

In this eBook, we will explore the bioanalytical challenges in reproductive toxicity
studies and outline the key translational drug development objectives in oncology.

We hope you enjoy this eBook!

Amy White
Editorial Assistant, Bioanalysis Zone
a.white@future-science-group.com
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Bioanalytical challenges were encountered during developmental and reproductive toxicity studies of
tanezumab in cynomolgus monkeys. Possible changes in breast milk composition over the postpartum
period potentially complicated assessment of tanezumab concentration in this matrix, requiring valida-
tion of the quantification assay across different time intervals. Immunogenicity assessment in maternal
serum was complicated by apparent increases in the incidence of antidrug antibody-positive results in
treatment-naive samples as pregnancy progressed that were due to changes in the concentration of nerve
growth factor, tanezumab’s target protein. This was overcome by employing gestational day-specific cut
points throughout pregnancy. Researchers should recognize potential challenges associated with dynamic
matrices/physiological conditions and anticipate that assays developed under normal conditions may re-
quire adaptation for specialized situations.

First draft submitted: 7 December 2018; Accepted for publication: 17 May 2019; Published online:
17 June 2019

Keywords: antidrug antibodies e breast milk e tanezumab e toxicity e toxicokinetics

Nerve growth factor (NGF) plays a critical role in neuronal growth and survival during embryogenesis (1,2]. During
adulthood, however, NGF acts as a modulator of nociceptive activity [(1,2). As a result, inhibition of NGF activity
is an emerging therapeutic approach for the management of chronic pain. Tanezumab is a humanized IgG,
monoclonal antibody with high selectivity and specificity for NGF [3]. Tanezumab inhibits binding of NGF to
its cellular receptors, tropomyosin kinase A and p75 (1,2). Tanezumab is currently in Phase III development for
the treatment of chronic pain and has demonstrated efficacy in clinical studies of patients with conditions such as
osteoarthritis and chronic low back pain [4-13].

Extensive nonclinical studies have been conducted as part of tanezumab’s development program. Per regulatory
guidance, a robust bioanalytical program supported the broader development program by assessing tanezumab
pharmacokinetics, toxicokinetics (TK) and immunogenicity. Assessment of tanezumab immunogenicity is of
importance since biologic therapies can induce immune responses that may result in production of antidrug
antibodies (ADA) [14,15]. The presence and activity of ADAs can alter the pharmacokinetic profile of a drug by
increasing clearance from the body, may reduce the efficacy of a drug via binding and neutralization, and can impact
safety by inducing potentially harmful generalized immune effects such as hypersensitivity or anaphylaxis (15]. Thus,
assessment of ADA is a key component of regulatory filings [14).

The tanezumab development program included studies in cynomolgus monkeys to assess potential develop-
mental and reproductive toxicity (DART) 116,17]. These studies were also supported by the bioanalytical program.
However, while there are regulatory guidelines for DART studies in general, there is limited guidance regarding
the bioanalytical support required for these types of studies and few examples in the literature (18). The bioana-
lytical support of tanezumab DART studies in monkeys ultimately included assessments of tanezumab TK and  pnewlands
antitanezumab immune response (presence of ADA) in several matrices, including plasma/serum from pregnant press
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and lactating animals, neonatal plasma/serum and milk from lactating animals, with evaluation of milk specifically
requested by a regulatory agency. Overall, the bicanalytical support program required standard TK/ADA assays
that were developed for use in plasma/serum from normal adult animals to be validated for use in pregnant and
neonatal animals and in breast milk.

However, during development of bioanalytical methods required to support DART studies, the program encoun-
tered challenges that were attributed to the potentially changing composition of milk over the course of lactation.
Unexpected findings in the ADA test across different gestational periods during pregnancy were also observed. The
primary findings, including TK and ADA data, have been published previously (16]. However, in hope of informing
others who may be involved in or planning bioanalytical support of DART studies, the current manuscript details
the specific challenges encountered and illustrates how these challenges were overcome.

Experimental

Validation of assays to assess tanezumab toxicokinetics in plasma & breast milk

Tanezumab was measured in cynomolgus monkey (Indonesian origin) plasma and breast milk using a quantitative
enzyme immunoassay method. Recombinant human NGF was diluted in coating buffer (1 x phosphate buffered
saline [PBS], pH 7.4) to a concentration of 5 pg/ml, and 100 pl was added to 96-well microtiter plates overnight
at 2-8°C. Wells were then washed three-times with approximately 300 pl wash buffer (PBS-T, pH 7.4), and 300 ul
block buffer (wash buffer/10% Blocker ™ Casein in PBS) was added for 1-3 h at room temperature. Wells were then
washed three-times with approximately 300 pl wash buffer. Standards (in duplicate), quality controls (in duplicate,
prepared twice) and samples were diluted (1:10 for breast milk samples, 1:100 for plasma samples) with sample
diluent buffer (wash buffer, 10% normal goat serum). Subsequent dilutions of each sample were made using 10%
(for milk) or 1% (for plasma) matrix in sample diluent buffer to ensure they fell into the linear range of the standard
curve. Total 100 ul of standard, control or sample was added to the wells for a approximately 1-h incubation at room
temperature. Wells were then washed six-times with approximately 300 pl wash buffer. A 100-pl aliquot of working
conjugate solution (goat antihuman IgG peroxidase-conjugated antibody in diluent buffer [wash buffer, 1% bovine
serum albumin] at final concentration of 10 [milk and maternal plasma] or 20 ng/ml [neonatal plasma] ) was then
added to each well and incubated for approximately 1 h at room temperature. Wells were then washed six-times
with approximately 300 pl wash buffer. A 100-ul aliquot of working tetramethylbenzidine (TMB) peroxidase
substrate solution (50:50 solution of TMB Microwell Peroxidase substrate and Peroxidase substrate solution B) was
then added to each well and incubated for approximately 8 (neonatal plasma), approximately 10 (maternal plasma)
or approximately 15 min (milk) at room temperature to develop color in proportion to the amount of tanezumab
present. A 100-ul aliquot of stop solution (1 M phosphoric acid) was then added. The optical density (OD) of
each well was then read within 30 min of adding stop solution using two filters: 450 nm for detection and 620 nm
for background. Sample concentrations were determined using a standard curve obtained by plotting OD versus
concentration. The calibration curve was generated using a four-parameter logistic fit (with 1/y” weighting for the
milk assay). The range for this method in maternal and neonatal monkey plasma was from 100 to 12,800 ng/ml
and was from 10.0 to 640 ng/ml in breast milk. A calibrator outside of the validated range of the assay was included
to serve as an anchor point to facilitate curve fitting (50.0 ng/ml for plasma; 5.00 ng/ml for breast milk). Maternal
plasma was initially collected between gestational weeks 2—15, covering all three trimesters. Maternal plasma was
also collected primarily in first trimester (gestational days 40-80), primarily second trimester (gestational days
70-100) and primarily third trimester (gestational days 120-135; see Results section for details). Neonatal plasma
was collected between 30 and 90 days after birth. Breast milk was collected in two different time frames, before
lactation day 30 and between lactation days 30-90; see Results section for details).

Validation of assays to assess tanezumab antidrug antibodies in serum & breast milk

An ELISA method was used to detect antitanezumab antibodies in cynomolgus monkey serum and breast milk.
Tanezumab was diluted in coating buffer (0.05 M sodium carbonate, pH 9.6) to a concentration of 0.1 pg/ml,
and 100 pl was added to 96-well microtiter plates overnight at 2-8°C. Wells were then washed three-times with
300 pl wash buffer (PBS-T, pH 7.4 for neonatal serum and milk; PBS, 0.01% polysorbate 20, pH 7.4 for adult
serum), and 300 pl block buffer (StartingBlock® [PBS]) was added for at least 1 h at room temperature, Wells
were then washed three-times with 300 ul wash buffer. Samples and positive/negative calibrators were diluted 1:50
with diluent buffer, and 100 pl was added to the wells for a 1-h incubation at room temperature to allow any
ADA to bind the immobilized tanezumab. Wells were then washed six-times with 300 pl wash buffer. A 100-pl
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aliquot of working conjugate antibody solution (biotinylated tanezumab in diluent buffer at a concentration of
500 ng/ml) was added to the wells and incubated for 1 h at room temperature. Wells were then washed six-times
with 300 ul wash buffer. A 100-pl aliquot of working streptavidin-horseradish peroxidase conjugate solution
(streptavidin-horseradish peroxidase diluted 1:20,000 [for neonatal serum and milk] or 1:32,000 [for adult serum]
in diluent buffer) was added to the wells and incubated for 1 h at room temperature. Wells were then washed
six-times with 300 pl wash buffer. A 100 ul of working TMB peroxidase substrate solution was added to develop
color for approximately 15 min. A 100-ul aliquot of stop solution was then added. The OD of each well was then
read within 30 min of adding stop solution using two filters: 450 nm for detection and 620 nm for background.
Data were presented as end point titers (logy; the end point is defined as the reciprocal of the serum/breast milk
dilution that is above the cut point of the assay). The positive control (monkey antitanezumab affinity-purified
antibody) was analyzed at concentrations of 3.13—1600 ng/ml in 100% adult serum/human breast milk (used as a
surrogate for monkey milk). The negative control was pooled 100% adult monkey serum, neonatal monkey serum
or breast milk, as appropriate. Adult monkey serum was collected from adult males and/or nonpregnant females,
neonatal monkey serum was collected up to 21 days after birth, and breast milk was collected on or before lactation

day 30.

Results & discussion

Challenges encountered during validation of tanezumab toxicokinetics & antidrug antibodies
assays

TK assays developed for normal adult monkey plasma were validated for use in three separate assays: maternal
plasma (collected berween gestational days 14 and 105), neonatal plasma (collected between 30 and 90 days after
birth) and breast milk (see below for collection times). The compeosition of breast milk, however, may fluctuate,
posing a potential challenge for tanezumab concentration assessment in this matrix. Breast milk consists of water,
various fats, proteins and sugars 19]. In humans, the relative composition of breast milk changes over the course of
the day and over the course of the postpartum period [19]. Fat content, for example, varies depending on the time
of day, and protein levels have been shown to drop approximately 50% by postpartum week 8 in mothers who
delivered at term [20,21]. In contrast, such pronounced differentiation of milk composition over time is not observed
in rhesus monkeys (221. In cynomolgus monkeys, milk composition in terms of fat and lactose does not differ from
that of rhesus monkeys, although there is no direct evidence available to demonstrate that milk composition does
not change over time [22]. Therefore, we had to ensure that the assay in breast milk from cynomolgus monkeys was
reliable despite the composition of breast milk potentially changing over the course of time.

To overcome this challenge and assess possible matrix effects, the assay was validated using milk collected at
two different time points based on the planned DART study designs. These time points were prior to lactation
day 30 (<30 day milk) and between lactation days 30 and 90 (30-90 day milk). Quality control samples at final
tanezumab concentrations of 0, 30 and 480 ng/ml were prepared in <30 day milk and in 30-90 day milk. Each of
these samples was then evaluated against calibration curves prepared in <30 day milk and again in 30-90 day milk.
The pre-established criterion for assay validation was set at eight of ten control sample lots being within £ 20% of
each calibration curve. However, only three of ten lots for control samples prepared in 30-90 day milk and only
six of ten lots for control samples prepared in <30 day milk had accuracy results <20% when evaluated using the
30-90 day calibration curve. Seven of ten control lots prepared in 30-90 day milk had accuracy results <30% when
evaluated against the 30-90 day calibration curve, and nine of ten lots had accuracy results <30% when evaluated
against the <30 day calibration curve. For quality control samples prepared in <30 day milk, nine of ten lots had
accuracy results <30% when evaluated against the 30-90 day calibration curve, and cight of ten had accuracy
results <30% when evaluated against the <30 day calibration curve. All unspiked matrix samples (0 ng/ml) had
results that were below the limit of quantitation regardless of the milk collection time and the calibration curve
used. Thus, in order to accept performance of the assay in milk collected at different times (i.e., <30 day milk and
30-90 day milk), the acceptance range for assay validation was increased from the predetermined criterion of 20%
to a criterion of 30% based on the observed matrix effects.

Details regarding the accuracy, precision, stability and other key parameters of the validated ELISA assays in each
matrix are shown in Table 1. Based on comparison performed during method development, newborn and adult
plasma performed equivalently in the assays.

Assays for the detection of antitanezumab antibodies in adult monkey serum (collected from males and/or
nonpregnant females), were validated for use in neonatal monkey serum (collected up to 21 days after birth) and
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Table 1. Analytical validation of ELISAs for tanezumab concentration determination.

Assay characteristic
Assay range (ng/ml)

Minimum dilution

Maternal plasma Meonatal plasma Breast milk
100-12,800 100-12,800 10.0-640
1:100 1:100 1:10

Inter-run assay accuracy, %RE (QC nominal concentration [(ng/mil]):

-LLo0Q -13.8 (100) -4.70 (100) -2.40(10)
- Low 10.3 (300) 18.0 (300) -5.00 (30)
- Mid -0.92 (4800) 4.40 (4800) -5.00 (120)
= High -5.51 (9600) 1.86 (9600) -7.08 (480)
-uLoQ -3.59(12,800) -9.26 (12,800) -8.44 (640)
Inter-run assay precision, %CV (QC nominal concentration [ng/ml]):

-LLoQ 21.2 (100) 10.7 (100) 14.1 (10)
= Low 9.85 (300) 5.11 (300) 6.88 (30)
= Mid 3.93 (4800) 2.43 (4800) 6.00 (120)
- High 3.68 (9600) 2.88 (9600) 4.69 (480)
-uLoQ 3.81 (12,800) 3.11(12,800) 4.88 (640)
Total error, sum of %CV + absolute value of %RE (ng/ml):

-LLoQ 35.0 (100) 15.4 (100) 16.5 (10)

- Low 20.2 (300) 23.1 (300) 11.9 (30)
- Mid 4.85 (4800) 6.83 (4800) 11.0 (120)
- High 9.19 (9600) 4.74 (9600) 11.8 (480)
-uLoQ 7.40 (12,800) 12.4 (12,800) 13.3 (640)
Long-term stability (days):

--20°C 398 180 187
--70°C 695 465 632
Benchtop stability At least 17 h At least 18 h At least 24 h
Freeze,/thaw stability' At least four cycles At least four cycles At least three cycles
Dilution integrity (%)#:

- Precision 417 2.24 1.48

— Accuracy 1.5 4.75 -26.9

TFreeze temperature is -70°C; thaw temperature is ambient temperature.
¥Based on 50,000-fold dilution of 100 ng/ml QC for plasma and based on 1:10,000-fold dilution of 100 pg/ml QC for breast milk (1:1000-fold when not including minimum dilution

of 1:10).

CV: Coefficient of variation; LLOQ: Lower limit of quantitation; QC: Quality control sample; RE: Relative error; ULOQ: Upper limit of quantitation,

breast milk (collected on or before lactation day 30). Based on comparison performed during method development,
newborn and adult serum performed equivalently in the assays. A summary of the design, precision, sensitivity and
other key parameters of these assays in each of the matrices can be seen in Table 2.

Challenges encountered during utilization of toxicokinetics & antidrug antibodies assays

Using the ELISA method validated for use in adult serum, an unexpectedly high frequency of ADA-positive samples
was reported in maternal serum from both tanezumab-dosed animals and nondosed control animals. Further, the
frequency of positive samples increased as pregnancy progressed. This led to the hypothesis that these results were
false positives due to physiological change(s) during pregnancy. Thus, further research was performed to identify
the cause of these false positives.

It is known that soluble dimeric/multimeric target proteins can interfere with, and produce false positives in,
bridging immunoassay platforms such as ELISAs due to their ability to bridge the capture and labeled detection
agents [23]. The target protein for tanezumab, NGE, exists naturally as a homodimer but had not previously caused
extensive false positives in nonclinical studies at normal physiological levels [24). It was hypothesized that increased
levels of NGF during pregnancy may account for the false positives being reported in the DART studies. This was
unexpected because while data were lacking in nonhuman primates, there was no conclusive indication of large
increases in NGF levels during pregnancy in humans at the time of assay validation. Therefore, a highly selective
and sensitive immunoaffinity LC-MS/MS assay was developed to assess serum NGF levels during pregnancy in
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Table 2. Validated ELISAs for antidrug antibodies determination.

Assay characteristic Adult serum Neonatal serum Breast milk

Positive control Mouse antitanezumab affinity-purified  Monkey antitanezumab Meonkey antitanezumab affinity-purified
antibody in 100% pooled adult monkey affinity-purified antibody in 100% antibody in 100% human breast milk
serum pooled adult monkey serum

Range (ng/ml) 3.13-1600 3.13-1600 3.13-1600

Minimum dilution 1:50 1:50 1:50

Megative control Pooled adult monkey serum Pooled newborn monkey serum Pooled monkey breast milk

Inter-run assay precision of the positive 5.78 6.22 3.45

control end point titer (%CV)

Intra-run assay precision of the positive  1.86 1.91 1.46

control (%CV)

Sensitivity: 95% Cl (ng/ml) 52.0 43.0 195

Screening cut point factor 1.20 1.14 1.39

Confirmatory cut point (% signal 36.0 239 3.3

reduction)

Recovery Not performed 80-125% in 100% of the lots examined 80-125% in 60% of the lots examined

Benchtop stability At least 7 h Not performed At least 21 h

Freeze/thaw stabilityT At least five cycles Not performed At least six cycles

TFreeze temperature is -20°C for serum and -70°C for breast milk; thaw temperature is ambient temperature.
CV: Coefficient of variation.

cynomolgus monkeys (25]. This assay demonstrated that NGF levels substantially increased in monkeys over the
course of pregnancy, with mean concentrations of 541, 1590 and 3560 pg/ml during the middle of the first, second
and third trimesters, respectively [25]. This represents a 12-, 34- and 77-fold increase in NGF in the first, second
and third trimesters, respectively, relative to nonpregnant controls (46.3 pg/ml). Middle of trimester was defined
as 130 = 21, 58 £ 12 and 17 £ 10 (mean = standard deviation [SD]) days before birth for the first, second and
third trimesters, respectively.

To overcome the issue of increasing NGF over the course of pregnancy during the tanezumab DART studies,
ADA assessment utilized gestational day-specific screening cut point factors determined from treatment-naive
samples collected at different points throughout pregnancy (day 20 [n = 18], day 97 [n = 16] and day 146 [n = 15]).
Samples with a response at or below the screening assay cut point were considered negative, while samples with
responses above cut point were considered potentially reactive and retested in a confirmatory assay. To establish
these cut points, samples of placebo-dosed monkey serum were analyzed over 3 days (two plates per day, six
plates in total). The assay cut point for each plate was defined as the mean response of individual serum samples
plus (1.645 x SD) to allow a 5% false-positive rate. Six individual cut point factors (one from each plate) were
determined by dividing the assay cut point for that plate by the mean response of the negative controls (blank sera)
on each plate. These six cut point factors were then averaged to give a cut point factor for that specific gestational
day. The cut point factors were calculated as 0.971 for gestational day 20, 3.50 for day 97 and 11.6 for day 146.
Since the cut point factor on day 20 was <1.0 bur was not greater than the assay cut point of 1.20 previously
determined for nonpregnant monkeys, a cut point of 1.20 was utilized for samples collected on gestational day 20
for the reproductive toxicity study. These gestational day cut point factors were also utilized in a second study of
tanezumab reproductive toxicity that included samples collected from gestational days 20-139. The day 20 cut
point factor of 1.20 was used for samples collected on gestational days 20-51, and the day 97 cut point factor of
3.50 was used for samples collected on gestational days 93—118. However, a large proportion of samples collected
on gestational day 139 from placebo-treated animals resulted in ADA-positive tests when the previously established
day 146 cut point factor of 11.6 was applied. It was therefore determined that a new cut point factor was required
for gestational day 139 in this particular study. Thus, using ten samples collected from placebo-treated animals on
day 139, a cut point factor of 21.7 was calculated and utilized during ADA assessment on gestational day 139 in
this study.

The finding that NGF levels increase over the course of pregnancy in monkeys also led us to revisit TK assays in
maternal plasma to further refine our assessment of whether gestational age of the plasma impacted quantitation of
tanezumab. In the initial TK assay, samples were prepared in pooled plasma collected at gestational weeks 2, 3, 5, 6,
7,9, 10, 12 and 15 (all n = 1 except week 7, which was n = 2). To ensure the TK assay was valid and reliable across
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Table 3. Analytical validation of ELISAs for tanezumab concentration determination in maternal plasma during second

and third trimesters.

Assay characteristic Second trimester Third trimester
Calibration standard matrix First trimester pooled plasma First trimester pooled plasma
QC matrix Second trimester pooled plasma Third trimester pooled plasma

Inter-run assay accuracy, %RE (QC nominal concentration [ng/mil]):

- Low
- Mid
- High

- Low

- Mid

14.7 (300) 5.00 (300)

0.771 (4800) 8.29 (4800)

1.81 (9600) 9.57 (9600)
Inter-run assay precision, %CV (QC nominal concentration [ng/ml]):

7.06 (300) 2.60 (300)

4,22 (4800) 1.01 (4800)

8.44 (9600) 1.36 (9600)

- High

CV: Coefficient of variation; QC: Quality control sample; RE: Relative error.

all periods of gestation, quality control samples prepared in the second and third trimesters were quantitated using
calibrators prepared in plasma collected primarily from the first trimester (gestational day 40 [n = 4], 45 [n = 3],
50 [n = 3], 60 [n = 1] and 80 [n = 1]). Pooled plasma from second trimester was collected at day 70 (n = 1), 71
(n=1),80 (n=1)and 100 (n = 2). Pooled plasma from third trimester was collected at day 120 (n = 3), 130
(n=1) and 135 (n = 1). Quality control samples prepared in plasma from second and third trimesters quantitated
accurately using calibrators prepared in plasma primarily from first trimester, demonstrating that gestational age
does not affect the assay’s ability to detect tanezumab in maternal plasma. A summary of the accuracy and precision
of the assay in the second and third trimesters can be seen in Table 3.

Bioanalytical support of tanezumab developmental and reproductive toxicity studies

The validated assays described above supported two pivotal DART toxicity studies in cynomolgus monkeys [16,17].
The larger of these two studies included 72 pregnant animals (18 per group) receiving weekly intravenous doses of
vehicle or tanezumab (0.5, 4 or 30 mg/kg) from gestational day 20 through parturition 116,17). Tanezumab TK was
assessed in maternal plasma regularly from gestational days 20-146 and at postpartum days 30, 60, 90 and 120.
Tanezumab concentration was assessed in maternal breast milk once between postpartum days 10-15 and once
between postpartum days 30-66. Tanezumab TK was assessed in neonatal plasma at postpartum days 30, 60, 90,
120, 180 and 360. Tanezumab ADA was assessed in maternal serum, using the gestational day-specific cut points
described earlier, at gestational days 20, 97 and 146 and at postpartum days 90 and 180. Tanezumab ADA was
assessed in maternal breast milk once at postpartum days 10-15 and between postpartum days 50-60. Tanezumab
ADA was assessed in neonatal serum at postpartum days 30, 90, 180 and 360.

These bioanalytical assessments demonstrated a few key points [16]. Maternal tanezumab exposure increased
with dose (Figure 1) and was consistent with previous findings in male and nonpregnant female monkeys. Despite
discontinuation of treatment at parturition, tanezumab was detected in maternal plasma up to 30, 90 and 120 days
postpartum in the 0.5, 4 and 30 mg/kg dose groups, respectively. There were also detectable levels of tanezumab in
breast milk up to 66, 15 and 60 days postpartum in the 0.5, 4 and 30 mg/kg dose groups, respectively, though at
lower concentrations than in maternal plasma (Figure 1). Tanezumab was detectable in neonaral plasma up to 30,
120 and 127 days postpartum in the 0.5, 4 and 30 mg/kg dose groups, respectively (Figure 1). Since concentrations
in neonatal plasma were higher than those seen in maternal plasma and breast milk at equivalent time points,
neonatal tanezumab exposure is likely a result of placental transfer in utero.

Antitanezumab immune response in the form of ADA was detected in all matrices, though not in all dose groups.
In maternal serum, the overall incidence of immune response was 28% in the control group and 28, 44 and 17%
in the tanezumab 0.5, 4 and 30 mg/kg dose groups, respectively. In the control group, only one of five animals
with an immune response had observable levels of drug and it was a trace amount. As described in the previous
section, individual gestation day-specific immune response rates were determined using three different gestation
time specific cut-point factors after the observation that there were large changes in the NGF during pregnancy
in cynomolgus monkeys. These cut point factors were determined based on analysis of gestational day specific
individual naive samples. The ADA incidence values reported are after applying recalculated cut-point factors to
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Figure 1. Tanezumab toxicokinetics assessment in maternal plasma, neonatal plasma and breast milk in antidrug
antibody-negative animals. Note that maternal plasma concentrations were assessed prior to the next dose. Also
note that one neonatal animal in the 30 mg/kg dose group had its sample drawn at day 127 after birth instead of day
120 (solid green triangles).

DB: Day after birth; FO: Maternal animals; F1: Neonatal animals; GD: Gestation day.

Reproduced with permission from [16] © 2015 Elsevier Inc. (2015).

account for target interference in the assay. Therefore the ADA response is considered specific and not due to the
target-related interference. The presence of ADA had no marked impact on overall tanezumab exposure in maternal
plasma. In breast milk, the overall incidence of immune response was 0% in the control group and 13, 30 and
0% in the tanezumab 0.5, 4 and 30 mg/kg dose groups, respectively. In neonatal serum, the overall incidence
of immune response was 17% in the control group and 11, 30 and 0% in the tanezumab 0.5, 4 and 30 mg/kg
dose groups, respectively. For each neonate that was ADA positive in the tanezumab-treated group, the associated
maternal animal was ADA positive in both serum and milk, demonstrating a correlation between immune response
status for the mother and pup. The cut point used for the neonatal serum was 1.14 based on the assay validation
data. In the case of cynomolgus neonates, it is unknown if there are changes in the NGF concentration across the
study period. However, as noted with the maternal component, increases in the NGF concentration do have the
potential to interfere in the ADA assay and cause false positive results.
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Conclusion

The tanezumab bioanalytical program supported specialized DART studies in cynomolgus monkeys, which required
the validation of assays to assess TK and ADA in maternal plasma/serum, neonatal plasma/serum and breast milk.
However, specific challenges were encountered during validation of these assays.

The composition of breast milk can fluctuate over the course of lactation in some species, potentially complicating
assessment of tanezumab concentration in this matrix. This potential complication was proactively overcome by
validating the TK assay in breast milk across different sampling time intervals (before lactation day 30 and between
days 30 and 90). We suggest this approach of validation over different time intervals whenever the composition or
characteristics of the particular matrix (i.e., breast milk) have the potential to change over time.

An unanticipated challenge was encountered during tanezumab ADA assessment in maternal serum during
pregnancy, which manifested as a high frequency of ADA-positive samples that increased as pregnancy progressed.
This spurred further research demonstrating that these false positives were the result of an increase in tanezumab’s
target protein (NGF) during pregnancy, which was unknown at the time of assay validation. This challenge was
overcome by employing gestational day-specific screening cut points at different stages of pregnancy (gestational
days 20, 97 and 146). Dynamic physiological conditions, such as pregnancy and lactation, may induce unexpected
changes in target proteins, and assays designed for study in normal adult animals may not be appropriate under
such conditions. Thus, researchers should assess the potential impact a specific physiological condition may have on
their assay and validate that assay across multiple time periods or intervals (according to the specific physiological
condition being investigated) to identify any unanticipated complications with the assay.

Future perspective
As regulatory requirements evolve, so too must drug development programs and the bioanalytical studies/approaches
that support these programs. In addition to adapting to a changing regulatory environment, bioanalytical programs
must also evolve to include newer and better technologies and approaches. In the ELISA-based tanezumab ADA
assessments, for example, we handled increasing NGF levels during pregnancy by employing gestational day-speciﬁc
cut points for samples collected late in pregnancy. This represented the best approach at the time the studies were
conducted. However, novel approaches have more recently been developed to reduce the rate of false positives
during ADA assessment by utilizing methods that remove or compete with the target protein (23,26]. It should also
be noted that, as an example of evolving guidelines, that the current ICH S6(R1) does not require milk analysis [27).
As both regulatory guidance and available technologies evolve, there are bound to be challenges and setbacks.
It is imperative that researchers share their learnings from these experiences in order to inform others and advance
bioanalytical support of drug development programs.
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Executive summary

e Tanezumab is a humanized monoclonal antibody, directed against nerve growth factor, in development for the
treatment of chronic pain.

e This paper describes bioanalytical challenges that were encountered during the design and conduct of
tanezumab developmental and reproductive toxicity studies — and how they were overcome.

Experimental

e ELISA-based assays were validated to assess tanezumab toxicokinetics and immunogenicity (presence of antidrug
antibodies [ADA]) in cynomolgus monkey maternal plasma/serum, neonatal plasma/serum and breast milk.

Results & discussion

e A challenge was anticipated with the assessment of tanezumab concentration in cynomolgus breast milk because
of known changes in the composition of breast milk over the course of lactation in some species. This potential
complication was proactively overcome by validating the assay in breast milk across different sampling time
intervals.

e An unanticipated challenge was encountered during tanezumab ADA assessment in maternal serum during
pregnancy, which manifested as a high frequency of ADA-positive samples that increased as pregnancy
progressed. Further research demonstrated that these false positives were the result of an unexpected increase in
tanezumab’s target protein during pregnancy. This challenge was overcome by employing gestational
day-specific screening cut points during the late stages of pregnancy.

Conclusion & practical tips

e Researchers should recognize potential challenges associated with using matrices and physiological conditions
whose characteristics have the potential to change over time (such as breast milk and pregnancy), and they
should anticipate that assays developed for use under normal conditions may not be appropriate for these more
specialized situations.
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There are many factors which need to be considered, such as the relevant species,
dosing route/frequency, dosing volume, dose levels, age/strain of animals, duration of
recovery phase, TK time points and any special parameters to be evaluated.
Toxicology studies are not a standard design, they require a detailed understanding of
the background and proposed use of test article. Overall, the more information which
is known, the better designed and more appropriate the toxicology study will be.

Yes, basically sexually matured animals should be used for most toxicology studies.
However, short term studies, such as those with extended single doses, should
consider the use of fully sexually matured animals.
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What special considerations should be explored for the safety evaluation
of a vaccine?

In addition to routine toxicology evaluation, assays for adjuvant or novel formulation,
clinical dose, regimen and patient population are required to be considered. In the
toxicology studies, local tolerance and inflammatory biomarkers are usually included as

well.

What happens when positive results are found in the genotoxicity studies?

If there is a positive result in the in vitro assay, it should be tested in the in vivo assay
as well. Additional tests are required to access the mode-of-action and to fully

evaluate if it possibly is human non-relevant.
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Toxicology studies:

design considerations, dosing
and instrumentation

How many different types of toxicology studies
are there?
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There are many different types of toxic

medical device development from preclinical to the
These include, but are not limited to:
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General toxicity

Reproductive toxicity

Irritation studies
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Compatibility studies




of animals are uééd in toxicology studies?

£

Mice Rabbits

( )
: W v

Rats Dogs

-—

Guinea pigs X Mini-pigs

‘ A
Hamsters

¢ X

Non-human primates
(NHPs) are also required in
some studies

The dosing routes for toxicology animals are usually the same as the
proposed human use, however, the related consideration to dose animals in
different dosing routes is important for preclinical study design. In addition
to the commonly used oral gavage, IV/subcutaneous/intramuscular/
intraperitoneal injection, IV infusion, intranasal, instillation, dermal,
intra-articular and some specific dosing routes are also applied. The volume
of dosing is adjusted to accommodate different species and dosing routes.
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In order to conduct the required toxicology studies to complete preclinical
drug development programs, a full-service toxicology contract research
organization is usually equipped with at least four different instruments.
These include:

Clinical / £ Tissue
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instruments for histology
hematology, -

serum

chemistry,

blood

coagulation
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analysis
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Significant scientific advances in biomedical research have expanded our knowledge of the molecular ba-
sis of carcinogenesis, mechanisms of cancer growth, and the importance of the cancer immunity cycle.
However, despite scientific advances in the understanding of cancer biology, the success rate of oncol-
ogy drug development remains the lowest among all therapeutic areas. In this review, some of the key
translational drug development objectives in oncology will be outlined. The literature evidence of how
mathematical modeling could be used to build a unifying framework to answer these questions will be
summarized with recommendations on the strategies for building such a mathematical framework to fa-
cilitate the prediction of clinical efficacy and toxicity of investigational antineoplastic agents. Together,
the literature evidence suggests that a rigorous and unifying preclinical to clinical translational frame-
work based on mathematical models is extremely valuable for making go/no-go decisions in preclinical
development, and for planning early clinical studies.

Lay abstract: Significant scientific advances in biomedical research have expanded our knowledge of the
molecular basis of carcinogenesis, mechanisms of cancer growth and the importance of the cancer immu-
nity cycle. However, despite that in many cases drug treatment can eradicate tumors in animals, treating
human tumors remains very difficult. This article describes a mathematical modeling framework to facili-
tate the prediction of clinical efficacy and toxicity of investigational antineoplastic agents.

First draft submitted: 19 December 2017; Accepted for publication: 12 March 2018; Published online:
23 April 2018

Keywords: cancer growth modeling e drug combination e GRI e myelosuppression e pharmacckinetics e PK/PD o
QSP e toxicity e translational e xenograft

Over the last 15 years, scientific advances in biomedical research have expanded our knowledge of the molecular
basis of carcinogenesis, mechanisms of cancer growth and the importance of the cancer immunity cycle (1-3). As a
result of those advances, a number of transformative anticancer therapies have been developed, which have brought
meaningﬁ;] declines of mortality and morbidity to patients with this devastal:ing disease. However, despite the
scientific advances in the understanding of cancer biology, the success rate of oncology drug development remains
the lowest among all therapeutic areas [4]. A recent analysis of 7455 clinical drug development programs between
2006 and 2015 showed that the likelihood of regulatory approval for a Phase I program is the lowest in oncology
drug development [4]. Only 5-7% of Phase I clinical oncology programs and <50% of Phase III oncology programs
are ultimately approved (5. A major reason behind this low success rate is the lack of a unifying framework to
predict clinical efficacy and toxicity profiles from animal and in vitro experiments. A rigorous unifying preclinical
to clinical translational framework could facilitate oncology clinical development by better identifying translational
strategies, patient selection criteria and appropriate biomarkers to measure [6). Robust translational research will
help with making informed decision early in drug development and improve success rate of late stage programs.
In this review, evidence will be presented to demonstrate that mathematical modeling can be used to build a rig-
orous and unifying preclinical to clinical translational framework to understand the anticipated exposure-response
relationship in humans while considering the tolerability profile. This information can be used to understand the
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benefit—risk profile of the investigational drug in different patient populations and maximize the drug’s potential
in clinical development.

Historically, the development of antineoplastic agents is largely an empirical trial-and-error process. This was
particularly true for antineoplastic drugs with cytotoxic mechanisms of action since these drugs are often dosed at
the maximum tolerated dose (MTD) in humans and this information was generally obtained experimentally in
dose escalation studies.

However, as a result of recent advancement in molecularly targeted therapy, immuno-oncology drugs, cancer
vaccines, cell-based therapies, and endless possibilities of drug combinations, obtaining an optimal toxicity—efficacy
balance is an increasingly complex task since not all drugs are dosed at MTD. Consequently, the standard empirical
approaches used in the past to optimize drug dosing and scheduling in patients are now of limited utility. A more
rational dose selection process using mathematical modeling, which is built on a clear understanding of the rarget
biology, to determine the required degree of target engagement would be extremely valuable and could potentially
save a lot of time since patient recruitment is challenging for Phase I oncology trials. This mathematical framework
can also be easily updated with clinical data and subsequently used to refine drug dosing and scheduling as well as
guide go/no-go decisions and trial designs (7).

The scientific and regulatory fields have long recognized the utility of mathematical modeling framework. As
early as 2006, the US FDA critical path opportunities report advocated the use of modeling and simulation for
decision making in drug development (8. More recently, the FDA reinforced this idea in their FDA voice blog,
which states: “Modeling and simulation play a critical role in organizing diverse datasets and exploring alternate
study designs. This enables safe and effective new therapeutics to advance more efficiently through the different
stages of clinical trials” (9].

In this review, some of the key translational drug development objectives in oncology will be outlined. Addi-
tionally, the literature evidence of how mathematical modeling could be used to build a unifying framework to
answer these questions will be summarized. Some recommendations for strategies to build a mathematical modeling
framework that facilitates the prediction of clinical efficacy and toxicity of investigational antineoplastic agents will
also be discussed.

Key translational objectives of a preclinical oncology drug development program

Generally, there are two key objectives for a standard preclinical oncology drug discovery program. Firstly, the
preclinical program needs to provide safety data to support an appropriate starting dose for Phase I clinical
programs. This is traditionally achieved using in vive animal toxicology studies. Secondly, the preclinical program
needs to provide scientific support for the rationale and biological plausibility of the investigational drug to warrant
a clinical study.

A major challenge to achieve these preclinical objectives is to determine the cross-species differences and the
relevance of the preclinical efficacy and toxicity data. Mathematical modeling and simulation can be used to account
for the species differences and collect all available data to make quantitative predictions about the therapeutic index
of the investigational agent in humans. This allows decisions to be made accordingly on whether to advance this
drug further into clinical development. The same mathematical model can also be used to determine the appropriate
starting dose, the projected human efficacious dose and the appropriate dosing schedule to be evaluated in Phase I
trials. This greatly maximizes safety and minimizes toxicity during Phase I studies and align realistic expectations of
the drug efficacy. The detailed mathematical approaches to build a translational modeling framework are described
in the subsequent sections.

Translating preclinical antitumor activities to clinical efficacy

Due to ethical and practical consideration associated with human clinical studies, animal models have been used
extensively in oncology research to evaluate the activities of antineoplastic agents. In contrast to other therapeutic
areas such as psychiatry, preclinical oncology research extensively utilizes human tissues [10]. The use of human tissues
minimizes the need of accounting for species-specific biology in efficacy translation. In fact, the most commonly
used preclinical model in oncology is the mice xenograft model, which comprises subcutaneous implantation of a
human cell line/tumor into an immune-compromised host mice [11,12]. The xenograft model represents extreme
simplification of human cancer, as it does not account for the complexities of tumor metastasis, host immunity,
tumor heterogeneity, and the development of treatment resistance that is routinely observed in cancer patients. [13,14).
Nevertheless, the drug exposure—response relationship derived from these models is still useful for understanding
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the degree of antitumor activity associated with the investigational drug, and allows in vive interpretation of tumor
growth inhibition data to inform early clinical development (15]. In a typical xenograft experiment, the xenograft
tumor volume is measured over time after drug treatments using calipers. The drug-treated tumor volume profile
is then compared with that of the vehicle treatment to obtain a quantitative metric of antitumor activity associated
with the investigational drug. This information can be used in mathematical models to define efficacy and predict
clinical antitumor response.

Due to the variability in the growth rate of human tumors in mice and the small sample sizes of preclinical
experiments, rigorous mathematical and statistical analyses are critical in preclinical drug development. There
are a number of mathematical approaches to translate the preclinically observed antitumor activity into clinical
efficacy. These approaches can generally be categorized into static algebraic approaches and dynamic, differential
equation-based approaches. The most commonly used approaches for efficacy translation are discussed in the next
section.

Static algebraic approaches of characterizing antitumor activity in preclinical models

There are three static algebraic approaches of antitumor activity that are commonly used in xenograft experiments:
tumor volume over control volume (T /C ratio); tumor growth inhibition (TGI); and growth rate inhibition (GRI).
Their calculations are summarized in Figure 1. Although there are advantages and disadvantages associated with each
algebraic descriptor, GRI is the least dependent on the tumor growth rate and the design of xenograft experiments.
Therefore, GRI should be considered as the first choice for translational work. The subsequent paragraphs will
introduce each of the three approaches and summarize the advantages of GRI.

T/C ratio is an easy-to-calculate metric of antitumor activity and is often used preclinically to characterize
antitumor activity [16-18]. T/C ratio is calculated by dividing the tumor volume of the drug-treated group by the
tumor volume of the vehicle-treated group at a predefined time (typically 3 weeks after starting the treatment,
illustrated by Figure 1). Although it is easy to calculate, the T/C ratio has some significant limitations since it
is heavily influenced by the natural growth rate of the xenograft tumor and the time points at which the T/C
ratio is calculated. This limitation is illustrated by the top panel of Figure 1. When treatments of both the slow
and fast-growing tumors result in tumor stasis, the T/C ratio generally overestimates the antitumor activity of the
fast-growing tumors in comparison to the slow-growing tumors. Due to this undesirable property, the T/C ratio
has very limited value for predicting human antitumor efficacy from preclinical data.

TGI is another commonly used static metric to measure antitumor activities (Figure 1, middle panel) (12,19.20]. It
is calculated by dividing the tumor volume difference between the vehicle group and the drug-treated group by the
tumor volume difference between the vehicle group and the tumor’s initial volume (Equation 1). TGI is generally
less dependent on the tumor growth rate. Additionally, the TGI obtained from mice subcutaneous tumor models
has been show to correlate with human clinical overall response rate for a spectrum of antineoplastic agents [12].
However, it still has a few limitations compared with the GRI.

(A i 4
%TG! = TT;':’:‘“‘-"E TT;;M.'nmm % 100

vehicle initial

(Equation 1)

In the last few years, GRI, a novel rate-based T/C metric, has become more popular for characterizing the
preclinical antitumor activity (21]. GRI is calculated by fitting all available tumor volume data first to an exponential
growth function. The resulting growth rates under the treatment and control conditions are then used to calculate
the percentage of GRI (Equation 2).

GR

%G R I = vehicle GR

Treaiiieil % 100

vethicle

(Equation 2)

There are a few advantages of using GRI to characterize antitumor activities. Firstly, since all available tumor
volume data are used to fit the exponential function, GRI is more efficient than the T/C ratio and TGI; it
requires fewer animals to achieve the same statistical power — as little as six animals per group would have sufficient
statistical power for translation [21]. Secondly, theoretical simulations have suggested that GRI can tolerate shorter
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Figure 1. Commonly used antitumor efficacy metrics. Top panel: T/C ratio. Middle panel: TGI. Bottom panel: GRI. T/C overestimates the

antitumor activity of the fast-growing tumors compared with the slow-growing tumors, which significantly limits its value for predicting
clinical efficacy. TGI is generally less dependent on the tumor growth rate than T/C. GRI, which is calculated by fitting all available tumor
volume data first to an exponential growth function, is the least dependent on the intrinsic growth rate of the tumor.

GRI: Growth rate inhibition; T/C: Tumor volume over control volume; TGI: Tumor growth inhibition.

study durations compared with the T/C ratio and TGI [21]. Thirdly, compared with T/C or TGI, GRI is less
influenced by the intrinsic growth rate of the xenograft tumor. Therefore, it is ideally suited to compare the drug
efficacies across different xenograft models. In particular, GRI has a much more dynamic range compared with
TGI in fast-growing tumors. As illustrated by Figure 2, for xenograft tumors which are slower growing (i.e., smaller
growth rate), GRI and TGI show a good correlation. However, for xenograft tumors with faster growth rates, GRI
has a much more dynamic range compared with TGI, which saturates at around 100% in fast-growing tumors.

Dynamic differential equation-based approaches of characterizing antitumor activity in preclinical
models

Although static algebraic approaches are very useful for summarizing the antitumor activity, they often cannot be
used to describe complex exposure—response relationships such as sigmoidal or Michaelis-Menten type of dose—
response curves. Furthermore, there is often a delay between drug administration and tumor shrinkage (i.e., it
takes a while for the drug to kill the tumor cells) which cannot be easily accounted for by static approaches. To
overcome these limitations, a number of differential equation-based dynamic approaches have been developed to
describe the tumor growth and exposure—response relationship of antineoplastic agents. The common approaches
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Figure 2. Correlation between tumor growth inhibition and growth rate inhibition for xenograft tumors of
different growth rates. Tumor growth inhibition and growth rate inhibition show good correlations for slow-growing
xenograft tumors. For fast-growing xenograft tumors, growth rate inhibition has a much more dynamic range
compared with the tumor growth inhibition, which saturates at around 100%.

GRI: Growth rate inhibition; TGIl: Tumor growth inhibition.

are summarized in Table 1. In general, the dynamic approaches can be categorized into two groups: phase-specific
models and phase nonspecific models. The phase-specific models assume that cancer cells are only susceptible to the
antineoplastic agents at a specific stage of the cell cycle (for example, antimitotic agents only work on cancer cells
that are dividing). These models typically include a series of transit compartments (Table 1) and usually provide a
good fitting of observed data [22-25). In contrast, the phase nonspecific models do not use transit compartments and
generally do not fit the observed delay between drug administration and tumor shrinkage well (12,26-28]. Another
key aspect of dynamic models is the form of the kill function, which can be either linear, Michaelis-Menten or
sigmoidal. The mathematical form of this function dictates whether the model can be used to understand the
impact of drug schedule (Table 1). A detailed tutorial has been published to discuss the proper use of dynamic
models (29].

Using xenograft antitumor activity to predict antitumor activity in humans

Whether the xenograft transplantation of subcutaneous tumor into immune-deficient mice provides predictive
values for discerning clinically efficacious antineoplastic agents has long been debated. Mathematical models of
preclinical antitumor data can play an important role in understanding the clinical potential of an investigational
antineoplastic agent. The translational modeling of preclinical antitumor activity data usually is a four-step process
(Figure 3). Firstly, a robust pharmacokinetic (PK) mathematical model, describing the concentration dynamic
of the drug, needs to be constructed based on PK measurements in mice (ideally in the same type of xenograft
mice as the efficacy studies). Secondly, using the established mice PK model as a foundation, an exposure-response
relationship can be established using xenograft efficacy studies to understand the effects of different doses/schedules
on the time course of tumor growth. The exposure—response relationship can be either static (as expressed by a
correlation between drug exposure and the resulting GRI on a graph) or dynamic (as expressed using a set of
differential equations to account for delayed drug effects and changes in growth rate over time) in nature [23). A key
consideration at this stage is selecting the appropriate xenograft model for clinical translations. This is particularly
important for molecularly targeted therapy (such as HER2 or EGFR inhibitors), as it is essential to ensure that
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Table 1. Commonly used pharmacokinetic/pharmacodynamics models to describe tumor growth kinetics.
Study (year)

Tumor growth term Tumeor kill term Transit Comments Ref.

compartments

Phase nonspecific models

Kogame et al.
(2013)

Yamazaki (2008)

Wong et al.
(2009)

Salphati (2010)

dryv
dt

drv

dTv

" This model was developed for a [26]
=k, x| 1 I TV, - Effect  Effect = Ko XC@)" potent, selective hedgehog
TG, +TV : KC50" + C(I)" signaling pathway inhibitor. It
was used to identify the degree
of PD inhibition required to
inhibit tumor growth.

- " V] This model was developed to [28]
=k, "[' - ﬁ]x(l = Effecty< TV ~k,,, xTV Efﬁ?{.’f _ Kma.x X C(I) understand the PK/PD
= KC50" + C(l)" relationship of a small molecule
cMet inhibitor. The model
structure closely resembles an
indirect response model.

et

K xC (I)” 0 This model was developed to [30]
= — i o— max understand the PK/PD
- kfl'.i.' A TV(I) Effect A TV Efﬁ:‘d - KC50" + C(t)" ;:cl,a:ri:::i:ifo.: a B-Raf inhibitor.
partments were
used.

0 This model was developed [27]
dTv Ky X (1) P

understand the PK/PD

KC50+ C(% [)" relationship of a PI3K inhibitor.
This model used a hill coefficient
on the effect term which is very
unigue.

- kﬂg x TV(t) - EﬂéCt Effect =

Phase-specific models

Lobo et al.
(2002)

Simeoni et al.
(2004)

Bueno et al.
(2008)

Jumbe et al.
(2010)

drv _

3 One of the first PK/PD models [22]
K[nﬂ?& x C(I)

r g - utilizing transit compartment to
- kﬂﬁ & TV(I) EffBCf - KC50+ C(f) describe the antitumer. It was

initially developed for
methotrexate.

3 This is one of the most commonly [23]
dTVI = A’U X TVI — Effect xTV, Eﬂect = Kkm‘ X C(f) used model structure for
dt \ ’ : medeling preclinical antitumar
] +( xw(t) activity. It was initially validated
Al against a few cytotoxic agents,

but the structure has been

subsequently applied to many

other types of compounds.

Effect = biomarker 2 It was developed for LY2157299, [24]

dTv, _

drv k.1 X (1= Effect) xTV a new type 1 receptor TGF-§

1y antagonist. Tumor growth
dt ¥ inhibition was linked to PD

k ‘ i
1 biomarker level.
1+ — X i I’

ngQ

2 This model was developed for [25]
Kmax x C(I) trastuzumab-DM1 (an ADC) in
order to determine the optimal
KCSO + C(E) dose and dosing schedule for
antitumor activity.

=k

d we ~ Ky X Effect xdTV,  Effect =
t

ADC: Antibody-drug conjugate; PK/PD: Pharmacokinetic/pharmacodynamics.

the xenograft model contains the pathway activation phenotype relevant to the drug’s mechanism of action. The
third step in the translation process is to translate the xenograft exposure—response relationship into humans by
substituting the PK portion of the mice model with predicted or observed human PK parameters, depending on
whether observed human data are available. A large body of literature exists for human PK predictions of small and
large molecules and has been reviewed extensively elsewhere [31-35]. In this step, a key consideration is to incorporate
interspecies differences in plasma protein binding to ensure that the translation is based on the free fraction of
the drug. After completing this step, a mathematical model can be used to predict the human exposure-response
relationship and simulate the clinical dose/schedule effects on tumor growth. The last step is to use a translational
exposure-tolerability model to predict the maximum tolerable dose/exposure in humans and evaluate whether the
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Figure 3. Common translational modeling approach for predicting the efficacy potential of an investigational
antineoplastic agent. Firstly, a pharmacokinetic mathematical model needs to be constructed as a foundation, based
on pharmacokinetic measurements in mice. Secondly, xenograft efficacy studies are used to establish an
exposure—response relationship. Thirdly, the xenograft exposure—response relationship is translated into humans
based on human data. Lastly, a translational exposure-tolerability model based on animal and human toxicity data is
used to predict whether the drug would have a meaningful tumor regression in humans at a tolerable dose.

PK: Pharmacokinetic.

investigational drug would have a meaningful tumor regression in humans at a tolerable dose. This step is also
very important since one of the major reasons for the lack of translatability is that mice often can tolerate much
higher drug exposure compared with humans. Therefore, even if an antineoplastic agent shows good efficacy in
the preclinical model, the efficacious exposure may not be safely achieved in humans. In fact, a poor correlation is
observed between the antitumor activity at mice MTD and activity in the clinic, suggesting that proper anticipation
of human tolerability is essential for this kind of translational work [12].

More recent research shows that preclinically predicted antitumor activity at human tolerable exposures correlated
strongly with clinical response [12]. Figure 4 summarizes the correlation between the preclinical predicted antitumor
activity (percentage GRI) and overall clinical response rate for a spectrum of molecularly rargeted and cytotoxic
agents at clinical maximum tolerable exposure. The data were collected from the literature and percentage GRI
was calculated using digitalized data [12]. This analysis suggests that when proper mathematical models are used to
account for human tolerable exposures, preclinical antitumor activity is highly predictive of the overall response rate
in the clinic. This strongly suggests that xenograft transplantation of subcutancous tumor into immune-deficient
mice can be used to discern the clinical potential of novel antineoplastic agents and highlights the importance of
using proper mathematical models for preclinical to clinical translation.

Using the modeling framework summarized in Figure 3, a number of successful preclinical—clinical translation
examples have been demonstrated 120,26,36-44]. In the case of cytotoxic agents, Jumbe ez al. described a cell-cycle phase
nonspecific tumor cell kill model which captured the features of tumor growth in trastuzumab-DM1-treated animals
under a number of single-dose, multiple-dose, and time—dose~fractionation conditions. This model suggested that
the antitumor activity was schedule-independent, and the tumor response was determined by the ratio of drug
exposure to a critical tumor stasis concentration (25]. This modeling framework was also used to translate the
molecularly targeted agents. For example, Tate et al. described a PK—pharmacodynamic-efficacy (PK-PD-E) model
for the translation of an investigational cyclin-dependent kinase 4/6 inhibitor. This model dynamically linked drug
concentrations to pharmacodynamic effects such as decreased phosphorylation of retinoblastoma protein, cell-cycle
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Antitumor activity in xenograft models correlates with clinical response
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Figure 4. Antitumor activity in xenograft correlates with clinical response. The data were collected from the
literature and percentage growth rate inhibition was calculated using digitalized data [12]. Antitumor activity in
xenograft correlates with clinical response for a spectrum of molecularly targeted and cytotoxic agents at clinical
maximum tolerable exposure.

GRI: Growth rate inhibition; RCC: Renal cell carcinoma.

arrest, and tumor growth inhibition. The model was used to support the clinical chronic dosing regimen for durable
cell-cycle inhibition [37).

Although the exposure—response relationship usually translates well for cytotoxic agents and molecularly targeted
agents, its utility is more limited in the immuno-oncology field since there are some fundamental differences between
human and mice immune systems. In this case, quantitative system pharmacology (QSP) models, which link PK
with mechanistic models of biological pathway modulation, become extremely useful. Since these models are built
on the understanding of the biological pathways and the model parameters are often generated experimentally
rather than fitted empirically, they can be viewed as quantification of the underlying biological processes. QSP
models enable the separation of biological and drug specific parameters, and thus have an enhanced interspecies
translational ability. This property is ideally suited for translational modeling of immuno-oncology agents since
one could re-parameterize the model using human-specific biological parameters while keeping the drug-specific
parameters the same between mice and humans since these are properties of the drug.

Several publications investigated the translatability of immuno-oncology agents using this QSP framework. For
example, Lindauer er 4l built a quantitative system pharmacology model to identify the lowest effective dose
for evaluation in clinical dose-finding studies for pembrolizumab, a programmed death 1 checkpoint inhibitor.
This model linked a compartmental PK model to a published physiologically based tissue compartment and used
receptor occupancy as the driver of observed tumor growth inhibition [45]. A similar QSP-based model was also
used to predict the safe starting dose and clinical efficacious dose for P-cadherin LP-DART, a bispecific T-cell
engager (40]. Overall, although a relatively new concept, the QSP modeling field is growing rapidly and more case
examples will become available in the coming years to really explore its full potential.

Methods for predicting clinical efficacy of drug combinations

Another very important aspect of modern oncology research is to understand drug combinations. Mathematical
modeling of preclinical data can also provide guidance on the predicted clinical benefit of combination therapies
under different dose and scheduling combinations. This is particularly important since combinations can be
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extremely complex when all permutations of doses and schedules are considered and testing all combinations in
the clinic is simply not possible.

The antitumor activities of combination therapies can be modeled by either static or dynamic approaches. Static
translations of antitumor activities are typically done via isobolograms of in vive exposures at various levels of
xenograft antitumor activities [46]. This approach is visual and could provide a graphical representation of the
exposure—response relationship for drug combinations to guide dose selection and escalation in the clinic. The
disadvantage of this isobolograms-based static approach is that it does not consider the time dynamics of drug
concentrations and the dynamics of drug effects. A dynamic combination modeling framework has been published
to better understand the sequential effect and prioritization of dose pairs (e.g., low-dose drug A + high-dose drug
B vs high-dose drug A + low-dose drug B) (47]. This dynamic semimechanistic model allows the optimization
of combination dosing schedules and determines which combination schedule would give the highest degree
of synergy. The application of combination modeling to guide clinical dosing schedules has been described for
combinations of MAPK and PI3K pathway inhibitors [4s).

Modeling translation of drug-induced toxicity

In addition to translating antitumor efficacies, mathematical modeling could also facilitate the quantitative predic-
tion of exposure—safety relationship in order to gain a scientific understanding of the tolerability profile. Although
antineoplastic agents are associated with many different types of toxicities/adverse events, some of the most com-
mon toxicities can be readily described by mathematical models. Properly verified mathematical models can be used
to ask the what-if questions related to drug safety. For example, mathematical modeling can be used to assess the
impact of intrinsic or extrinsic factors, such as organ impairment, gender, race and drug—drug interaction, on the
safety profile. Some of the most mature translational mathematical models are in the areas of myelosuppression,
gastrointestinal (GI) toxicity, and cardiac safety. The current state of scientific knowledge is discussed below.

Neutropenia & general myelosuppression models

Antineoplastic agents often have the greatest impact on the growth and survival of rapidly proliferating cells. One
of the most notable rapidly proliferating cell types in the body is the hematopoietic stem cell (HSC). In a person’s
life time, HSCs, which account for just 0.01-0.2% of the total bone marrow mononuclear cells, produce blood
cells weighing ten-times more than the bodyweight of that person [49,50). Due to their high proliferative potential,
cells derived from HSC are extremely susceptible to the cytotoxic effects of antineoplastic agents.

As all blood cells, neutrophils are produced by HSC in the bone marrow. Neutrophils are short lived in the blood
circulation (51] and their level is dependent on a constant state of production [52]. Thus, neutrophils’ homeostasis is
particularly susceptible to antineoplastic agents [52). Neutropenia (low neutrophil counts) and febrile neutropenia
increase the risk of hospitalization and complications as a result of an increased susceptibility to infections. Therefore,
it has become a primary concern in oncology drug development. A general myelosuppression model, which can
be applied to neutropenia, was one of the first mathematical models developed to characterize the time courses of
adverse events and has been used to understand the exposure—safety relationships of a huge number of antineoplastic
agents [53].

This model mimics myelopoiesis by including a concentration-related drug effect on a proliferating precursor cell
compartment. Maturation of the precursor cells in the bone marrow is modeled as a series of transit compartment
to explain the delayed effect on circulating neutrophil counts. A homeostatic feedback mechanism is included
to stimulate the increase in proliferation of the precursor cells when circulating mature neutrophils counts are
low. The attractiveness of this model for translation lies in its ability to separate drug-related versus physiology-
related processes, which allows for predictions of untested scenarios in different species. Due to its parsimonious
structure, it is frequently applied and has been shown to be highly reproducible and robust (53], Due to its simplistic
nature, this mechanism-based structure also allows for extensions, such as rescue treatments with recombinant
granulocyte-colony stimulating factors.

In the context of preclinical to clinical translation of drug safety, this model separates the drug- and physiology-
related processes. Since species-dependent parameters can be obtained from the literature, only drug-specific potency
parameters are needed to predict the clinical myelosuppression profile from preclinical data. It has been shown that
drug-specific potency parameters can be scaled from animal to humans after correcting for species differences in
protein binding and i vitre sensitivity (54]. Using this kind of translational exposure safety model, the tolerability
profile in Phase I studies can be forecasted and updated to increase precision once neutrophil data in humans
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become available. This strategy allows more rapid decision making on dosing schedules and dose escalation (55,56).
Furthermore, although neutropenia per se is not life threatening, it could result in reduced capability for fighting
infections and the development of febrile neutropenia. A body of research has shown that the shape of neutrophil
profile is related to the risk of developing febrile neutropenia [57). A translational understanding of the risk could be
invaluable in early clinical developments for identifying patients requiring rescue treatments and maximizing the
therapeutic potential of the investigational agent [58,59].

Gastrointestinal toxicity models

In addition to blood cells, enterocytes in the GI tract is another rapidly proliferating cell type in the body. Due to
their high proliferative potential, enterocytes are also extremely susceptible to the cytotoxic effects of antineoplastic
agents such as DNA-damaging agents, antimitotics, drugs which affect the protein homeostasis pathways and
epigenetic regulators (60,61]. In fact, about 50-80% of the patients receiving chemotherapies develop Gl-related
adverse events (62,63 The incidences and severity of Gl-related adverse events could be potentially mitigated
by changing the dosing schedule and employing dosing holidays in order to achieve efficacious exposures while
maintaining tolerability [60,64]. The current dosing schedules for many antineoplastic agents are often identified
empirically through head to head comparison in clinical trials. However, due to ethical, cost and time duration
considerations, only a limited number of schedules could be tested in the clinic. Thus, a mechanistic understanding
of GI roxicity using preclinical models and a quantitative translational framework could be extremely beneficial for
the management of GI toxicity.

Although the molecular mechanisms regulating the homeostasis of intestinal epithelium are not as well understood
as myelopoiesis, the fundamental process maintaining intestinal mucosa integrity has been described. Slowly dividing
stem cells located near crypt bottoms produce rapidly dividing progenitor cells, which form mature absorptive cells,
enterocytes and secretory cells after lineage commitment [65-67). Mature epithelial cells then migrate toward the
lumen side of the mucosa where they undergo apoptosis and shedding (¢6]. A number of system biology models
have been constructed to investigate this process [68-72]. And more recently, the quantitative translational aspects of
gastrointestinal toxicity are investigated using irinotecan (73]. Irinotecan is known to induce gastrointestinal-related
adverse events in the clinic (74]. Shankaran ez 4/. built a quantitative system pharmacology model to describe the
key aspects of intestinal cell dynamics. This model was used to determine the toxicity of the compounds against
intestinal crypts in rats and subsequently translated into quantitative predictions of enterocyte loss and recovery
kinetics in humans [73]. The model predictions showed good correlation with clinical observed rate of irinotecan-
induced gastrointestinal adverse events. The model was then used to simulate a range of clinical schedules to rank
the schedules based on the extent of gastrointestinal toxicity (73). This kind of translational work could be very
beneficial for optimizing dosing schedule of cytotoxic agents. For other classes of antineoplastic agents such as
immuno-oncology agents, animal models may not be relevant since the mechanism of GI toxicity is often not due
to cytotoxicity in humans. For example, for nivolumab, pembrolizumab and ipilimumab, very limited GI toxicity
was observed in animals but it is the dose-limiting toxicity in humans. Therefore, at this moment the GI toxicity
prediction by mathematical models are more restricted to chemotherapeutic agents.

Other types of toxicity

In addition to myelosuppression and gastrointestinal toxicity, antineoplastic agents, particularly small molecule
RTK inhibitors, also cause cardiovascular adverse events including QT prolongation. At a fundamental level, the
heart is an electrical organ, and cardiac contractility is a complex interplay between many ion channels. This
process can be recapitulated in silico through mathematical modeling with a good degree of certainty. In the
pharmaceutical industry, significant investments have been made to develop mechanistic-based cardiac models to
predict cardiac safety. The largest initiative is the Comprehensive in vitro Proarrhythmia Assay. Comprehensive in
vitro Proarrhythmia Assay proposes to assess a drug’s effect on multiple ion channels and integrate the effects in
a computer model of the human cardiomyocyte to predict proarthythmic risks (75]. The in silico reconstructions
integrate drug effects on multiple human cardiac currents and the results are confirmed with human stem cell-
derived cardiomyocytes. The modeling results could guide risk management in clinical trials, and in appropriate
cases, potentially obviate the need for a dedicated QT study. Similar efforts are also under way to predict drug-
induced liver injury, particularly in the bile acid transporter inhibition area [76,77).
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Table 2. The key preclinical to clinical translational differences between cytotoxic antineoplastic agents and

immuno-oncology agents.

Key translational differences Cytotoxic agents Immuno-oncology agents
Preclinical model Xenograft Syngeneic

Target Tumaor Host immune system
Benchmark for clinical efficacy At least 60% GRI =i

Efficacy response Continuous and show dose response Sometimes binary

Translation Exposure-based translation Biomarker-based translation/-/
FIH dose 1/6 of HNSTD MABEL

TUnknown,

FIH: First in human; GRI: Growth rate inhibition; HNSTD: Highest nonseverely toxic dose; MABEL: Minimal anticipated biological effect levels.

Conclusion & future perspective

We are in the midst of an evolving paradigm shift for oncology. The growing knowledge of basic molecular and
cellular mechanisms underlying carcinogenesis and immuno-oncology as well as the availability of large amount
of data will allow mathematical models to adequately describe the processes involved, and make quantitative
predictions. The current mathematical modeling knowledge in oncology is largely built on the experience of
developing cytotoxic and molecularly targeted agents. For immuno-oncology agents, syngeneic mice with intact
immune systems are often used pre-clinically to determine the anti-tumor efficacy since the drug often targets the
host immune system rather than the tumor itself. During the mathematical translation work, one would need to
consider the species difference between mouse and human immune systems. This cross-species translation makes
efficacy and toxicity projection much more difficult (Table 2). Making the cross-species translation even more
difficult, the investigational drug often has different binding affinities in different species. Therefore, a key future
direction for mathematical modeling in oncology is to build and validate translational immuno-oncology models.
The oncology modeling field could do well by learning from the experience of vaccine and inflammation modeling
community to solve these problems.

Another future research direction is to understand the heterogeneity of antitumor responses. Due to practical
limitations, only a small number of xenograft models could be studied in preclinical developments, and this
limits our ability to understand how patients with heterogeneous tumor would respond to the investigational
antineoplastic agent. Fortunately, significant advances have been made in the development of genomics technologies
and high-throughput preclinical Phase II-like studies where hundreds of patient-derived xenograft tumors could
be monitored for drug effects (78]. These data can be combined to determine the preclinical sensitivity differences
between different types of molecular signatures (79,80, Ultimately, this would allow better patient selection in
the clinic and lead to more benefits for the patients. Patient-derived xenograft (PDX) models in the context of
population pharmacokinetics/pharmacodynamics are a unique way of predicting population distribution of the
responders and can be used as a Bayesian prior for clinical development. Furthermore, one of the major problems
with current mice xenograft studies is the lack of genomic diversity. In the future, next-generation sequencing
in high-throughput Phase II-like PDX studies will provide more information about how genomic diversity will
impact drug pharmacodynamics and efficacy. If a predicted PD biomarker can be developed and incorporated into
mathematical models, it could facilitate efficacy prediction in tumors of different genomic backgrounds.

Overall, despite many practical challenges, significant advances have been made to establish a mathematical
modeling framework to facilitate the efficacy and toxicity translation in oncology. For cytotoxic agents and most of
the molecularly targeted antineoplastic agents, mathematical modeling of the preclinical data can now predict the
clinical efficacy and toxicity profile with good confidence as demonstrated by the examples discussed in this review.
However, translation for immuno-oncology agents remains very difficult. The oncology translational modeling field
should look to quantitative system pharmacology fields of inflammation and vaccines for scientific inspiration. The
potential of an investigational oncology product. Lessons learned from the models could help determine the best
clinical development strategy and the kinds of patients who would benefit the most from the new drug. Together, a
model-based development paradigm will result in a rational and more efficient oncology drug development process.
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Executive summary

e Over the last 15 years, scientific advances in biomedical research have expanded our knowledge of the molecular
basis of carcinogenesis, mechanisms of cancer growth and the importance of the cancer immunity cycle. However,
despite the scientific advances in the understanding of cancer biology, the success rate of oncology drug
development remains the lowest among all therapeutic areas.

o Mathematical modeling can be used to translate preclinical knowledge into clinical predictions to refine drug
dosing and scheduling as well as guide go/no-go decisions and trial designs.

e Preclinically, there are a number of mathematical approaches to translate the preclinically observed antitumor
activity into clinical efficacy. These approaches can generally be categorized into static algebraic approaches and
dynamic, differential equations-based approaches.

e Growth rate inhibition should be considered as the first choice for static algebraic translation of preclinical
efficacy data.

e In the case of sigmoidal or Michaelis—-Menten type of dose response curves or in a situation there is a delay
between drug administration and tumor shrinkage. Dynamic differential equation-based dynamic approaches
should be used to describe the exposure-response relationship.

o A four step process can be used to preclinical antitumor activity to clinical efficacy. Once the proper steps are
taken, recent research shows that preclinically predicted antitumor activity at human tolerable exposures
correlated strongly with clinical response.

e Mathematical modeling of preclinical data can also provide guidance on the predicted clinical benefit of
combination therapies under different dose and scheduling combinations. Isobologram-based static approach
and differential equation-based dynamic combination modeling framework have been published to better
understand the sequential effect and prioritization of dose pairs.

# In addition to translating antitumor efficacies, mathematical modeling could also facilitate the quantitative
prediction of exposure-safety relationship. Some of the most mature translational mathematical models are in
the areas of myelosuppression, Gl toxicity, and cardiac safety. The current state of scientific knowledge is
discussed below.

e In summary, the growing use of mathematical modeling in oncology translation will provide a unifying
framework for evaluating the potential of an investigational oncology product. Lessons learned from the models
could help determine the best clinical development strategy and the kinds of patients who would benefit the
most from the new drug. Together, a model-based development paradigm will result in a rational and more
efficient oncology drug development process.
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