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Live-cell imaging is a key technique in cell biology, offering insights
essential to our understanding of disease and the development of
therapeutics. However, analyzing and interpreting acquired data can
prove difficult due to its complexity and multidimensionality. 

The recent focus on integrating live-cell imaging and machine
learning tools has been an exciting step in streamlining the analysis
workflow. Artificial Intelligence (AI)-driven methods are able to
recognize patterns in data that cannot be identified by the human
eye, enabling interrogation of complex data quickly and objectively
to make it more accessible for researchers to interpret.

In this eBook, we highlight how AI and machine learning have been
implemented to make live-cell image analysis more efficient for
quantifying cell viability, investigating mesenchymal stem cell
heterogeneity and assessing subcellular features.
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ABSTRACT
Single cell cytometry has demonstrated plausible immuno-heterogeneity of mesenchymal stem cells (MSCs) owing to their multivariate stromal
origin. To contribute successfully to next-generation stem cell therapeutics, a deeper understanding of their cellular morphology and immunophe-
notype is important. In this study, the authors describe MSCProfiler, an image analysis pipeline developed using CellProfiler software. This work-
flow can extract geometrical and texture features such as shape, size, eccentricity and entropy, along with intensity values of the surface markers
from multiple single cell images obtained using imaging flow cytometry. This screening pipeline can be used to analyze geometrical and texture
features of all types of MSCs across different passages hallmarked by enhanced feature extraction potential from brightfield and fluorescent
images of the cells.

METHOD SUMMARY
This study describes the development of an enhanced image feature extraction approach to analyze single cell image data of mesenchymal
stem cells (MSCs). MSCProfiler, an automated image analysis pipeline, was developed using CellProfiler software to analyze geometrical and
morphological/texture features and fluorescence intensities of biomarkers in MSCs across passages and tissue sources. Compared to existing
image analysis tools, this workflow is devoid of human bias and is marked by the efficiency with which it filters out nontarget images and extracts
features from brightfield and fluorescent images of cells.

TWEETABLE ABSTRACT
Mesenchymal stem cells are known for their cellular heterogeneity, which requires deeper understanding to contribute stem cell therapeutics.
MSCProfiler is an automated, single-cell image-processing workflow that sheds light on MSC heterogeneity.

GRAPHICAL ABSTRACT
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At the forefront of cell-based therapies are mesenchymal stem cells (MSCs), with over 1000 registered clinical studies under way [1].
These are adult tissue-derived multipotent stem cells, which can be isolated from almost all postnatal organs and tissues [2]. They have a
variety of pleiotropic functions such as antiapoptosis, angiogenesis, antifibrosis and chemo-attractive properties, making them a useful
tool for a wide variety of therapeutic applications [1,3,4]. An important metric to qualify MSCs as beneficial therapeutic agents is the
determination of their safety and risks, if any [4]. Consequently, culturing and studying these cells become important. However, one of
the hurdles faced in the translation of in vitro MSC studies is that many of the properties that are studied, especially expression of surface
proteins, arise because of the artificial culture environment [5]. Expression of surface markers such as CD90, CD73, CD105 and CD44,
which are routinely used for MSC characterization, are limited to only being expressed in vitro and not in situ. A major challenge in the
translation of MSCs to clinical application is the inherent heterogeneity of MSCs, which influences its properties of immunomodulation
and regeneration [3]. The heterogeneity, arising due to isolation, culture and expansion, warrants an extensive study on various MSC
subtypes and their categorization [3,6].

To understand this heterogeneity, a cell-by-cell approach as opposed to conducting studies at a population level would be more
advantageous in revealing important and unique properties of various cell types [7]. In this context, single cell analysis platforms such as
imaging flow cytometry (IFC) can prove to be a powerful tool. An amalgamation of high-throughput cytometry and microscopy, IFC allows
extraction of traditional flow cytometric data and images of each event from fluorescent, brightfield (BF) and laser side scatter/darkfield
(DF) channels [8]. The potential of this technology has mostly allowed the exploration of nuclear translocation [9], autophagy [10,11] and
detection of DNA damage [12–14]. However, unraveling the immuno-heterogeneity of cells using this technology is still under way. The
high-throughput nature of this technology allows the collection of enormous amounts of data from a single cell, which can be used to
answer questions of cellular heterogeneity [8] and holds immense potential for data mining and creating well-trained neural networks.
However, a large amount of information remains underutilized to a great extent due to the lack of data analysis tools that can extract
meaningful information from the images [9].

In this study, we have used the Amnis ImageStream image cytometer which is one of the widely used IFC instruments. Data analysis
on Amnis platforms can be done using their proprietary software IDEAS or with analysis tools such as FCS Express (DeNovo Software).
Apart from having the advantage of performing traditional flow cytometry data analysis, the IDEAS platform also provides users with
‘wizards’, which provide assay-specific analysis templates for feature finder, enabling sequential analysis without many complications
(https://cytekbio.com/pages/imagestream). In addition, specific areas or regions of the cell image can be defined using a ‘mask’ (defined
set of pixels in the region of interest) that contain features such as creating nuclear masks or cell surface marker-specific masks. It is
also possible to create the masks on IDEAS based on user-defined criteria. This can be done by using the mask manager, which has 13
available functions to create the new mask. However, use of this analytical software is primarily dependent on the experience of the user
and therefore brings in bias. This can especially be challenging when understanding immuno-heterogeneity, which can lead to missing
out on potentially important features if one does not actively look for them.

The recent trend in the incorporation of machine learning (ML) or artificial intelligence in biology has resulted in the advancement
of data analysis approaches [15]. Use of virtual or label-free staining of cells [16,17], use of BF information alone to extract quantitative
features of cells [16] and use of ML to analyze IFC data for diagnostics [18] have all introduced a new paradigm. However, some of these
methods might require an in-depth knowledge of deep-learning techniques, neural networks or programming languages [19]. In this study,
the authors used a user-friendly, freely available software, CellProfiler (available at https://cellprofiler.org/), to create a pipeline that can
be used to analyze most of the commonly available image file formats [20].

Here the authors introduce MSCProfiler, a completely automated workflow, to analyze IFC data from different human MSCs such as
the stem cells of human exfoliated deciduous teeth (SHEDs) and Wharton’s jelly-derived MSCs (WJMSCs). The authors developed the
entire workflow using the SHEDs and tested the robustness of the same using WJMSCs. SHEDs were stained with antibodies that recog-
nize surface antigens of these cells, prescribed as minimal criteria for identification of MSCs by the International Society for Cell & Gene
Therapy (ISCT) [21]. The authors included two surface markers in their studies: CD44/homing cell adhesion molecule and CD73/ecto-
5′-nucleotidase. Conventionally, with routine flow cytometry-based characterization of MSCs, bivariate plots of CD44 and CD73 should
represent ≥95% double-positive population (refer to Supplementary Figure 1) to suffice the criteria of MSCs as per ISCT guidelines and
should express ≤2% hematopoietic marker CD45 [21]. In the authors’ panel, they used the above markers and included SYTOX Green
as a live/dead discriminator. Live cells exclude SYTOX Green from their membranes, whereas the nucleus of dying/dead cells whose
membrane integrity has been compromised take up the dye [22]. The authors focused on the extraction of feature information from
individual BF and/or fluorescent images acquired on the Amnis ImageStream Mk II instrument. This workflow can identify images of
live singlets based on the exact boundary of single cells from doublets or aggregates and compute the geometrical parameters such as
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Table 1. Sample preparation guide.
Tube Reagent mix Total volume of antibody added (3 μl

each antibody per 1 × 106 cells)
Total volume of cells
added

Total volume of staining
buffer added

Final volume

1 CD44 + CD73 + CD45 + SYTOX Green 9 μl 50 μl 41 μl 100 μl

2 CD44 (single color control) 3 μl 47 μl

3 CD73 (single color control) 3 μl 47 μl

4 CD45 (single color control) 3 μl 47 μl

5 SYTOX Green (single color control) Nil. 50 μl

area, aspect ratio, eccentricity, compactness and even texture features such as, inverse difference moment and entropy. The intensity of
CD44 and CD73 antigens were also extracted from the fluorescent channel images and their surface distribution pattern was observed.

Materials & methods
Cell culture
Individual cell cultures of SHEDs at passage 9 (P9) and 12 (P12) and WJMSCs at P6 were maintained for this study. Each cell type
were seeded in 100 mm culture dishes at a density of 5000 per cm2 and grown in KnockOut Dulbecco’s modified Eagle medium (Gibco)
media supplemented with 10% fetal bovine serum (Gibco), 1× Pen-Strep (Gibco) and 1× glutamine (Gibco) and grown at 37◦C (humidity
conditions) until they reached 90–95% confluency with media changes every 24 or 48 h as required. Cells were then washed once with
plain basal media without any supplements and trypsinization was done by adding 0.25% trypsin-EDTA (Gibco) followed by incubation
at 37◦C for 10 min until all the cells had detached from the culture dish. Trypsin-EDTA was neutralized with basal media and the cells
were collected and centrifuged at 1200 r.p.m. for 6 min to obtain the cell pellet.

Preparation of cell suspension for immunostaining
The cell pellet was resuspended in 1 ml media, and the cell count was determined. Cells were then washed twice with staining buffer
(2% fetal bovine serum in phosphate-buffered saline). Two percent fetal bovine serum helps to sustain viable cells while in suspension
post-trypsinization. A cell suspension of 1 × 106 cells per 50 μl suspension contributed to 100 μl of reaction volume when mixed with
antibodies and staining buffer. The amount of antibody added to every tube is described in Table 1.

Antibodies & immunostaining
Live SHEDs were simultaneously stained for three surface antigens with an antibody cocktail consisting of CD44, CD73 and CD45. The
list of antibody–fluorochrome conjugates are provided in Supplementary Table 1. Cells were incubated for 30 min, washed twice with
staining buffer and finally resuspended in 100 μl of staining buffer. Prior to data acquisition, SYTOX Green (1×) was added to Tubes 1 and
5 (Table 1) and incubated at 37◦C for 15 min. SYTOX Green is a nucleic acid stain/dye which helps discriminate between live and dead
cells.

To address the biggest concern of spectral spillage in a multicolor immunophenotyping experiment, we prepared the right controls for
compensation. The single color controls for every antibody used including the DNA binding dye were prepared. Using the compensation
algorithm, the noBF files were generated while acquiring the single color tubes. Cells were stained for all the single color compensation
controls. Since MSCs would not express CD45, cells from peripheral blood were used as single color controls. For the viability dye, SYTOX
Green, compensation control was prepared by giving heat shock treatment to MSCs at 70◦C for 5 min followed by incubation on ice.
Table 1 summarized the reaction mix per tube, using -1 × 106 cells/ml cell density.

Acquisition on the Amnis ImageStream Mk II
Cells were acquired on the IFC platform Amnis ImageStream Mk II equipped with one charged couple device (CCD) camera (six
channels/detectors) using INSPIRE acquisition software, briefly described in Figure 1A. The detection channels available for use in the
instrument based on the fluorochrome conjugates were V450 (Channel 1, 435–505 nm), SYTOX Green (Channel 2, 505–560 nm), phy-
coerythrin (PE; Channel 3, 560–595 nm), BF images (Channel 4, 595–642 nm), Peridinin Chlorophyll Protein-Cyanine 5.5 (PerCP-Cy5.5)
(Channel 5, 642–745 nm), and DF images/ side scatter (Channel 6, 745–780 nm). The instrument configuration and panel design are
provided in Supplementary Table 2. Unstained cells were first run to set the baseline correction by adjusting the laser powers such that
no autofluorescence could be detected. Lasers were set at 10 mW for 405 nm laser (Channel 1 excitation) and 10 mW for 488 nm laser
(Channel 2, 3 and 5 excitation). Sample tubes containing all four colors were run and ≥1,00,000 events were acquired. All the single color
tubes were run with the BF and DF parameters turned off and were automatically saved with ‘noBF’ mentioned in their file names. These
files were later used to set up the compensation matrix postacquisition. All raw data files were saved in raw image file (.rif) format.

Setting up compensation on IDEAS
As opposed to conventional flow cytometry which relies on voltage gain of individual photomultiplier tubes to collect a signal generated
from antibody fluorochrome conjugate, the detectors available on the Amnis ImageStream Mk II are charged couple devices. They
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Figure 1. Supervised versus automated data analytical tools. (A) Sample preparation and acquisition on the imaging flow cytometer using INSPIRE
software, which generated the single cell images of each cell in flow. (B) Supervised analytical software IDEAS v6.2 was used to create a compensation
matrix and .daf and .cif files to analyze the acquired data and view the cell images. Data analysis software such as FCS Express v6 was used to analyze
the cytometry data. (C) MSCProfiler analytical automated pipeline. Images exported from IDEAS were converted to .tiff format and later uploaded on
MSCProfiler and run through the workflow to extract information from the single cell images and identify cells of interest.

have a higher quantum efficiency than photomultiplier tubes, which make them ideal detectors to collect dim fluorescence signals, a
prerequisite for good imaging. On this instrument, a pixel-based compensation is performed postacquisition using IDEAS software. The
‘noBF’ files of each color acquired in .rif format were loaded onto IDEAS software to create a compensation matrix to correct the spectral
spillage of fluorochromes in respective channels. Once the compensation matrix was set up, they were saved in compensation matrix
(.ctm) file format.

IFC data analysis
The IFC data have two components – first, the flow cytometric data conventionally represented by dot plots and, second, the individual
images of each dot on the plot. As a comparative study, the IFC data were analyzed using both IDEAS and FCS Express software. The data
analysis was performed using the proprietary software IDEAS v6.2 (Amnis Corp., WA, USA). Following hierarchical gating, the population
of interest was first identified, after which the image data analysis began. Every cell was demarcated with a number and was visible
on the screen/image gallery. ‘noBF’ files were used to set up the compensation matrix. The .rif and .ctm files were then used to create
the data analysis file (.daf) and compensated image file (.cif). The downstream analysis was performed using the .daf files. Following
a hierarchical gating strategy, first the focused cells were identified by plotting a histogram of normalized frequency versus gradient
root mean square value of Channel 4 (BF). This was followed by single cell identification (selected apart from the aggregates/debris)
gated from the aspect ratio of Channel 4 versus area of Channel 4. The next plot was to identify live cells (negative for SYTOX) from the
Channel 6 (DF) versus Channel 2 plot, followed by CD45 negative cells from the Channel 6 (DF) versus Channel 3 (CD45) plot (exclusion
gating strategy), and finally populations positive for both CD44 and CD73 were identified from a bivariate plot between Channel 1 (CD44)
and Channel 5 (CD73).
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Analysis using FCS Express
The .daf file was read by FCS Express v6 (Research Use Only), flow cytometry data analysis software. It was ensured that both the .daf
file and the .cif file for each sample tube were available in the same analysis folder. Using a gating strategy similar to that described in
the preceding section, singlets were identified first, followed by live cells. The CD45 negative cells were first identified and gated onto
the next plot to show the CD44 and CD73 double positive cells. This software validated the gating strategy applied to the populations
before proceeding with single cell image data analysis. A flowchart of the steps involved in supervised analysis platforms are shown in
Figure 1B.

Preparing images for CellProfiler analysis
The individual images from Channels 1, 2, 3, 4 and 5 were selected from Export .tif images under the Tools option on IDEAS. The images
come with an open microscopy environment (.ome) extension, which were converted to .tiff using Fiji/ImageJ software in an automated
fashion using an in-house-built macro (Supplementary Information). These individual images were used in the image processing work-
flow as described in the later sections, to extract the single cellular features. The workflow was developed using CellProfiler software to
analyze the single cell images of MSCs.

MSCProfiler workflow
The individual .tiff images of all the channels were then loaded into the MSCProfiler pipeline through the input modules (features that
perform specific tasks). Using the NamesAndTypes module, each channel image was categorized in a way that a singlet set consisted of
information on a single cell/event consisting of BF and fluorescent channel images. The automated pipeline was described by broadly
classifying them into 11 steps based on the purpose they serve. Individual cell information (i.e., information from all five channels)
was processed through all the modules of each component to identify and extract various features such as geometric, texture and
intensity values, described in Figure 1C. To begin with, the total number of cells analyzed was 54,356 (SHEDs P9), which were selected
from the ‘focused’ cell gate on the IDEAS software. Therefore, a total of 271,780 images, collected from all five channels, were run on
MSCProfiler. All 271,780 images were not run through the workflow at one time. The total set was divided into 24 groups, each containing
approximately 10,000 images. In order to evaluate the strength of the workflow, roughly 13,000 and 10,000 each of WJMSC (P6) and
SHEDs (P12), respectively, were analyzed as well. The steps in the MSCProfiler workflow are as follows:

1. Quality control of images – the MeasureImageIntensity and FlagImage modules were used to discard images that did not contain
any cellular information. The MeasureImageIntensity module calculated the intensity measurements of the images based on which
the boundary conditions were set in the FlagImage module to discard the poor-quality images. Only BF (Channel 4) images were used
for this quality check to estimate if the image had any cellular information or not. Those BF images whose total image intensity was
in the range of 5500–7900 pixels and whose total image area was in the range of 9000–13,000 pixels were best fit to proceed. The
images that did not satisfy the criteria were discarded/flagged from the analysis.

2. Preprocessing steps – the unflagged image set was then used for further analysis. To identify the cellular region, BF images were
used. Each of the BF images were preprocessed using four modules: ImageMath, Smooth, RescaleIntensity and EnhanceEdges. The
ImageMath module was used for subtraction of the foreground from the background of the BF images. The Smooth module applied
the Gaussian filter on the BF images to blur the pixels outside the cell and highlight the pixels inside the cell. The RescaleIntensity
module found the minimum and maximum intensity values across the entire BF image and rescaled every pixel, so that the minimum
intensity value was zero and the maximum intensity value was one. The EnhanceEdges module made use of the Sobel filter method
to highlight the edges of the cell identified in the BF image.

3. Segmentation of cell boundary – the preprocessed BF images resulting from the above-mentioned steps were used to identify the
cell boundary. This section of the workflow involved four modules. First, the threshold module was used to identify the pixels of
interest based on the gray scale signal using Otsu thresholding, a method based on the signal variances between the foreground and
the background. Second, the Morph module removed the identified pixels from the background of the segmented image. Third, the
IdentifyPrimaryObjects module identified cell boundary. Finally, the ExpandOrShrinkObjects module was added to get a more accurate
cellular boundary. The BF images that contained one cell per image proceeded for further processing, while those that contained more
than one cell per image were discarded by the FlagImage module.

4. Identification of singlets – this section of the workflow contained three modules, which were used to identify only the singlet MSCs
and remove the images that contained more than one cell. The MeasureObjectSizeShape module calculated geometrical features,
such as Area, FormFactor, Compactness and Eccentricity, of the cell identified from the BF image. A boundary condition was set up
on the Area, FormFactor and Eccentricity measurements in the FilterObjects module to obtain the singlets. Eccentricity describes
the deviation of a shape/object is from circularity, for a circle it is equal to 0. Compactness gives an idea whether an object has holes
(or missing pixels) in it or is a close bound figure; a circle has a compactness of 1. Aspect ratio (minimum ferret diameter/maximum
ferret diameter) defines how elongated an object is; for a perfectly circular object, it is equal to 1. For the identified cell to be a singlet,
its Area was set in the range of 150–4500 pixels, its FormFactor lay in the range of 0.75–1.0 pixels and its Eccentricity value was in the
range of 0.0–0.7 pixels. If the identified cell did not meet this criterion, the BF image was considered a nonsinglet and was discarded
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by the FlagImage module. The ranges specified in individual modules were set by first taking a set of 50–100 cell images that had a
mix of target and nontarget cells and were measured during the pipeline building steps.

5. Identification of live singlets – this part of the workflow confirmed an identified singlet as a live or a dead cell based on the appro-
priate marker using the following five modules: RescaleIntensity, MeasureObjectIntensity, FilterObjects, MeasureImageIntensity and
FlagImage modules. These modules sequentially called for the SYTOX channel images (Channel 2) of the identified singlet. For a
singlet to be a live singlet, the mean intensity value of the SYTOX channel was set to 0 pixels. Therefore, such cells with no signal in
the SYTOX channel were the live cells. Detection of signal/intensity from the SYTOX channel marked the cell as a dead cell and hence
it was discarded.

6. Identification of CD45 negative population – this section of the workflow checked that the MSCs were negative for CD45 expression
(tagged to PE) as one of the first criteria to identify them. The RescaleIntensity, MeasureObjectIntensity, FilterObjects, MeasureIm-
ageIntensity and FlagImage modules were again sequentially called for the PE channel (Channel 3) images of the identified live singlets
to confirm that the cells were PE negative. The mean intensity values of the images from PE channel was set in the range 0–0.002 pix-
els.

7. Classification of singlets into large, medium and small MSCs – the identified singlets of MSCs were categorized as small, medium
and large cells based on their area and this was performed using the FilterObjects module. The small, medium and large MSC singlet
classification was based on the area criteria set within the ranges of 2200–3000, 3001–4000 and 4001–4500 pixels, respectively.

8. Identifying CD44 and CD73 surface marker regions – the region of expression of CD44 (Channel 1) and CD73 (Channel 5) was identified
using the Identify Primary Object module based on the minimum cross entropy thresholding method.

9. Estimation of parameters – various parametric features were calculated for the identified singlets based on the geometry, texture and
intensity measurements. The modules included MeasureTexture and MeasureGranularity. Using the BF images, a bunch of features
such as area, eccentricity, compactness, entropy and granularity were calculated. Using the identified CD44 and CD73 regions, the
total intensity of both the markers were also measured. Texture Features such as inverse difference moment and entropy value were
also calculated. Inverse difference moment gave a measure of the homogeneity within a defined region. Entropy value indicated the
randomness within the structure.

10. Visualization of singlets – the OverlayOutline module gave the outline of the cell and outline of the CD44 and CD73 markers on the BF
image of the cell. These images were saved as .png files with the help of the SaveImages module.

11. Saving data – in the last section of the workflow, the data of all the calculated values were saved as separate .csv files with the help
of the ExportToSpreadsheet module. The data of the geometrical features of the singlets were also saved as a .properties file by the
ExportToDatabase module. This .properties file can be used in the future for analysis and classification of the MSCs using the ML
approach.

Results & discussion
Conventional flow cytometry-based analysis versus imaging cytometry analysis
The workflows illustrated in the Figure 1, compared supervised analytical tools with the authors’ automated data analysis workflow,
MSCProfiler. To understand the robustness of this workflow, they used MSCs from two sources and three different passages: WJMSCs
(early passage P6) and SHEDs (later passages P9 and P12). The MSCs in all three passages showed dual expression of the cell surface
markers, CD44 and CD73. However, the authors observed distinct populations losing expression of these surface markers toward the
later passages (Supplementary Figure 1). The IFC results were analyzed on FCS Express software following the gating strategy as shown
in Figure 2A. The next set of analysis following similar flow cytometric logic, as shown in Figure 2B, was performed using IDEAS. The
FCS Express analysis revealed that out of 142,171 (the total acquired events) the number of singlets was 10,314, out of which 9733 were
live cells (i.e., negative for SYTOX Green), 9714 were CD45 negative and 9404 cells were double positive for both CD44 and CD73, shown
in Figure 2A. Similarly, using IDEAS software, out of 142,171 total events, 54,356 were focused cells. From the focused cells, 7900 cells
were identified as singlets and 7700 were live cells. Finally, the number of cells positive for both CD44 and CD73 was found to be 7579,
as seen in Figure 2B. The gate statistics and the percentages for both the software (FCS express and IDEAS) have been summarized in
a tabular format in Figure 2C. The sequential output of IDEAS gating strategy is described in Figure 3A. The visual confirmation of every
acquired event during the analysis stage, through the image gallery of IDEAS, served to bolster the gating strategy on the platform. For
example, from the image gallery the live cells were confirmed by distinguishing from the images of the cells that had taken up SYTOX
Green in Channel 2 for as shown in Figure 3A.

In Figure 4, single cell images as seen in the IDEAS image gallery are shown. In Figure 4A, the width of each cell was also calculated
from the BF channel image (top right corner of each image). It displays the image gallery of different sized cells based on their BF
information in Figure 4A. The authors observed that the cells could be categorized into three groups based on their cell width ranging
between 16–20 μm (small), 20–26 μm (medium) and ≥27 μm (large). In Figure 4B, the CD44 and CD73 double positive expressors are
shown. A lack of signal can be seen from the SYTOX and CD45 channels. In addition, to understand the dual expression pattern of the two
surface markers CD44 and CD73, the corresponding channel images represented by blue and red, respectively, showed co-expression
by using the masking feature of IDEAS software. Similar classification was observed in the image gallery of another passage of the
SHEDs (P12) and from a different source of MSCs such as the WJMSCs (Figure 4C).
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image gallery on the Amnis ImageStream shows the double expressor of CD44 and CD73. (C) The statistics of the different populations analyzed by
these supervised platforms have been tabulated.
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Figure 5. Cell area graphs to demonstrate cell size heterogeneity in mesenchymal stem cells using the MSCProfiler. (A) Graphical representation of
the spread/distribution of the area parameter of stem cells of human exfoliated deciduous teeth (SHEDs) at passage 9, run through the MSCProfiler
pipeline. (B) Classification into distinct groups of small, medium and large cells based on the cell area of SHEDs at passage 9; 3486 cells obtained as
an output of the MSCProfiler pipeline were graphically plotted. (C & D) Images of SHEDs at passage 12 and WJMSC at passage 6 were run on
MSCProfiler, then classified into small, medium and large cells. Statistical significance was determined using the Kruskal–Wallis multiple comparisons
test using GraphPad Prism (v8.0.1) software.

Analysis using a novel workflow: MSCProfiler
The authors have outlined all the steps that went into building their novel pipeline: the MSCProfiler. The prime benefit of this lay in au-
tomation of the analysis workflow, starting from image quality control right up to the parameter estimation and classification of cells,
described in Figure 3B. MSCProfiler can be fed with a large number of image sets depending upon the computational bandwidth avail-
able to the user. In this study, the datasets were split into batches to perform the analyses to ease out the data size. Post segmentation,
the three types of features that were extracted from the imaging modalities were the geometrical and texture features and the intensity
values. The ‘Focused Cells’ (54,356) annotated in this pipeline generated images of SHEDs that revealed statistically significant hetero-
geneous cell populations within a single passage of MSCs (SHEDs P9). Similarly, roughly 10,000 and 13,000 each of SHEDs (P12) and
WJMSC (P6) cells, respectively, were also analyzed using the MSCProfiler (Supplementary Figures 2 & 3). The spread or distribution of
area (based on number of pixels in a shape) in the cells (SHEDs P9), as seen in Figure 5A & B, demonstrated three different categories
of populations, which were small (2200–2999 pixels), medium (3001–3999 pixels) and large (4008–4493 pixels), and most of the cells
belonged to the small category. Categorization of the cell types of WJMSCs (P6) and SHEDs (P12) based on cell size are shown in
Figure 5C & D. This also clearly indicates the robustness of the automated workflow using different cell types and passages, without
human bias. The implication of this for the morphometric parameters was revealed further in the extraction of geometrical features.
The shape quantification of the SHEDs enhanced the authors’ understanding of the characterization parameters. With the goal of using
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Figure 6. Geometrical and texture parameters demonstrated heterogeneity in mesenchymal stem cells (SHEDs P9) using the MSCProfiler. (A–C)
Geometrical features such as aspect ratio, eccentricity and compactness were compared among the three different classes of cells. (D–F) Texture
features such as inverse difference moment, sum entropy and entropy values were compared among the three different classes of cells in stem cells of
human exfoliated deciduous teeth at passage 9. Statistical significance was determined using the Kruskal–Wallis multiple comparisons test using
GraphPad Prism (v8.0.1) software.

the minimum necessary measurement features to characterize a single MSC adequately so that it can be unambiguously classified,
the authors chose the aspect ratio, eccentricity and compactness of a single cell as discriminators. The performance of the pipeline
in determining the shape measurements depended a lot on how the image objects were preprocessed. The distribution of aspect ratio
(ratio of image object height vs width) did not show statistical significance among the three categories of cells (small, medium and
large), as seen in Figure 6A. Analysis of the annotated pixel values using the Kruskal–Wallis multiple comparisons test demonstrated
that the small cells were more circular (close to 1.0) than the medium and large cells from the same passage (p > 0.99). However, the
distribution was negatively skewed in the small cells because the whisker and half-box were longer on the lower side of the median than
on the upper side.

The eccentricity feature (ratio of the minor axis length to the major axis length of an image object) distributed the pixel values (between
0 and 1) and demonstrated that the small cells had lower eccentricity values than the medium and large cells in the same passage, as
shown in Figure 6B. The center of distribution of the box and whisker plots was the lowest of the three distributions in the small cells
(median: 0.2–0.4), while in the others the median was between 0.4 and 0.6. The distribution in all three classes was approximately
symmetric, as both the half-boxes were almost the same length on both upper and lower sides. According to the statistics, small cells
were more circular than the other two categories.

Cell shape measure can be best calculated from descriptors such as mean compactness (ratio of the area of an image object to
the area of a circle within the same perimeter). A circle is depicted by a minimum value of 1.0. The larger the compactness, the more
irregularities and complexities of the cell boundary. The small cells showed lower compactness values than the medium and large cells,
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as shown in Figure 6C. The center of distribution of the box and whisker plots was the lowest of the three distributions in the small cells
(median: 1.0–1.1), while the medium cells had distributed values between 1.07 and 1.31 and large cells between 1.08 and 1.27. However,
the distribution was positively skewed in the small cells because the whisker and half-box were longer on the upper side of the median
than on the lower side.

Texture features are also very important computational feature extraction descriptors. They bring about the values between shapes
and individual pixel values. An important measure of variation brought about from the Haralick texture features is inverse difference
moment. It is a measure of homogeneity in cells, which gets maximized when neighboring image pixels share same values (i.e., while
measuring texture analysis, two pixels are considered at a single time, the reference and neighbor pixel). The spatial relationship between
the reference and neighbor pixel is calculated to understand the gray level differences. There were stark differences among the three
classes of cells in terms of inverse difference moment, as seen in Figure 6D (also refer to Supplementary Figure 3). The small cells
were more homogeneous in terms of texture compared to the other two classes of cells- the medium and large cells. It provided high
discrimination accuracy for images acquired in motion. This discriminator for local homogeneity is lower in medium and much lower
in large cell types. The center of distribution of the box and whisker plots was the highest of the three distributions in the small cells
(median: 0.2–0.25), while the medium cells had distributed values close to 0.2 and large cells close to 0.15.

Entropy of population analysis can reveal highly structured cellular patterns. IFC dataset distributions are being utilized for identifi-
cation of malignancy in other cell types by analyzing the differences in multidimensional distributions of related entropies. The entropy
and combined entropy of the small cells (9.0) were lowest compared with the medium (9.5) and large cell types (10.71). The center of
distribution of the box and whisker plots in all three sets showed homogeneous entropy patterns. More entropy-based patterns could be
identified from the medium and large cells, as described in Figure 6E & F. Application of these textural entropy investigations can evalu-
ate the homogeneity and randomness of gray values within the BF cell images, essentially making it a label-free digital image analysis
of single cells.

In terms of biomarker expression, CD73-PerCP Cy5.5 and CD44-V450 expression levels were compared in SHEDs (P9). CD73 intensity
of expression was higher in the large cells compared with the medium and small cells, as seen from Figure 7A. The authors observed that
the CD44 expression levels were higher than CD73 in all three cell types, represented in Figure 7B. To compare the distribution pattern of
both the markers, the authors normalized the cell area from which CD44 and CD73 showed expression, by dividing that area by total area
of the cell to obtain percentage expression. Results showed that CD44 was expressed over a larger area when compared with CD73,
significantly (p < 0.0001) when analyzed using the Mann–Whitney test shown in Figure 7C. FCS Express software analyzed a population
of 0.27% and 0.69% of cells which were non-expressers of CD44 and CD73 in SHEDs P9 and P12, respectively (Supplementary Figure 1).
Although MSCProfiler can identify these rare cell populations, a greater number of datasets and additional criteria are required to modify
the existing pipeline (part of an ongoing study).

MSC heterogeneity has been documented by many researchers. It can be derived from different sources of tissues or even arise
randomly from a clonally dividing cell population. However, what is debatable is whether the appearance of such cellular heterogeneity
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within the MSC population follows a stochastic or a deterministic process. Identifying heterogeneity among the MSCs has always been
a challenge, in which the classical approach using microscopy and standard cytometry assays gives information about their surfaceome
but not an exhaustive one, as these stem cells do not express any exclusive signature surface markers. There have been attempts using
deep learning and ML methods to explore functional heterogeneity and phenotypic and morphometric classification in MSCs. However,
most of these studies have been conducted at the population level using microscopic imaging of MSC in vitro cultures, which restricts
the sample size for analyses [23]. Few reports of in silico studies using single cell images of MSCs are under way, and all of these
use comprehensive image processing algorithms with extensive knowledge of image processing computational tools [19]. MSCProfiler
captures the information of MSC heterogeneity based on the texture features of the single cells from IFC and helps explain the detailed
cellular features of the population. The existence of heterogeneity is proof enough to show that studies must not be limited to population
level but must also look at single cell expression. This will help researchers come up with more stringent protocols for identifying MSCs
best suited for clinical purposes. This brings in the rational of the present study in developing an unsupervised workflow that can assist
a stem cell biologist in the appropriate identification and classification of MSCs best fit for specific translational studies.

Feature extraction from images of single cells was the hallmark of this study, which led the authors to develop the MSCProfiler
workflow. The aim was to identify postacquisition pattern recognition of MSCs (SHEDs) based on multiple image features of single
cells such as aspect ratio, cell texture, shape, surface antigen distribution and intensities of expression of such antigens. The authors
characterized the gross surfaceome of the SHEDs in this study by developing a nonsupervised image processing pipeline that can
robustly segment and analyze single cell morphologies from BF standalone images. There are multiple robust, high-end screening image
analysis programs available that can quantify visual cellular morphotypes by microscopy [15]. However, the critical criteria in any such
image analysis tool should be lack of bias, ability to identify image-based aberrations (image blur, debris crowding, autofluorescence,
saturation of pixels) and high speed of resolution of individual image objects. This pipeline used images of single cells generated from
an imaging flow cytometer (Amnis ImageStream Mk II platform), which collectively gives an advantage and takes care of most of the
image-based aberrations, making a single image object for acquired data files. This feature rules out the first concern of shadowing of
cellular features in case of a smear or a tissue slice [24]. In this paper, the authors have described an automated protocol implemented
in validated open-source software called CellProfiler [24–26] with the capacity to offer a suite of image-based measurement features
which can extract quantitative information from images. In addition, the parameters extracted from this workflow can be further used to
build an unbiased categorization of singe cells based on the phenotypes using ML approaches. Though such tasks can be programmed
using R/Python there are more user-friendly tools like CellProfiler Analyst. In fact, with the workflow described in this paper it is possible
to extract cellular parameters in file formats that are supported by CellProfiler Analyst.

Although conventional flow cytometry on its own can be a source of high-throughput screening for large datasets, IFC has been
able to plug in the image data output to further enhance its throughput. The authors have strategically validated their pipeline with both
conventional and image flow cytometry data and demonstrated the shortcomings in either case. Conventional flow cytometry lacks
spatial information of every dot on the analysis plot, while IDEAS on the Amnis platform is proprietary and needs to be customized to
meet individual needs. This has been one of the first attempts to screen for cellular heterogeneity of MSCs using morphometric features
of single cells.

Conclusion
MSCProfiler is an approach to analyzing IFC data that adds valuable information from the images concurrently with conventional flow
cytometric analysis. This would be the value addition to answering the respective biological questions that can be resolved using MSCs.
This method is completely automated, and so there is no human bias, which was one of the crucial challenges of the other currently avail-
able techniques. It does not require extensive programming knowledge to perform such an intense analysis. Analyzing other sources of
MSCs and different passages within the same type highlights the robustness of the workflow developed. However, having a high com-
putational processing capacity to analyze thousands of image datasets should be considered as a caveat while using the MSCProfiler.
As this pipeline is dependent on the computational power of the data processing system, it brings along with it the time constraint and
the data storage of large file sizes (.daf file generated from the IDEAS software is ∼0.1 GB). Our study used only five parameters to be
analyzed by the MSCProfiler. In cases where more parameters need to be explored (6–12), other data analytical tools such as Cytominer
or customized algorithms have to be employed to classify these image sets. In this study, we had to segregate the images into groups
of 10,000–20,000 images for a run time of 2–4 h on the MSCProfiler.

Future perspective
This study has been one of the first attempts to screen cellular heterogeneity of MSCs derived from two different tissue sources using
morphometric features of single cells. An automated workflow provided by the MSCProfiler has proved to be an unbiased approach to
extracting image texture information from a huge range of single cell images that is not dependent on the instrument generating the data.
Our workflow has been able to extract similar morphometric features of different types of MSCs in an unbiased manner. On the other
hand, MSCProfiler can also be used to identify different cell populations with the inclusion of additional criteria such as fluorescence
signals of the surface markers and correlate the extracted texture features for their identification. This is being evaluated with ongoing
experiments on identification of hematopoietic stem cells or ‘blasts’ in human bone marrow samples. Most importantly, MSCProfiler
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does not require knowledge of any advanced computation language to apply this pipeline to the study of single cells. MSCs have a huge
potential in drug discovery and cell-based therapeutic applications. While manufacturing clinical grade MSCs in an expanded scale, the
availability of a quality assurance/quality control software such as the MSCProfiler can set comparable and rigorous standards for the
production systems for cell culture. The stem cell heterogeneity, arising due to isolation, culture and expansion conditions, warrants
a robust tool to set quality standards for these stem cells during production and make the supply more consistent and uniform in an
efficient and cost-effective manner.
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Executive summary

• To address the challenges in defining single cell phenotypes, an automated pipeline was developed using an enhanced image feature
extraction approach.

Experimental
• Mesenchymal stem cells (MSCs) from stem cells derived from human exfoliated deciduous teeth (SHEDs) and Wharton jelly-derived MSCs

(WJMSCs) obtained from the umbilical cord tissue, across different passages, were immunostained in single cell suspension and
quantified using imaging flow cytometry on the Amnis ImageStream platform.

• Using these single cell images, an automated pipeline named MSCProfiler was developed. The workflow was developed using CellProfiler
software to analyze the single cell images of mesenchymal stem cells.

Results & discussion
• The prime focus in automation of the analysis workflow (MSCProfiler) started from image quality control right up to parameter estimation

and classification of cells.
• Postsegmentation, these images were classified to calculate geometrical and texture features such as shape, size, eccentricity and

entropy along with intensity values of the surface markers from over 50,000 single cell images obtained from imaging flow cytometry.
• The texture features of the mesenchymal stem cells such as inverse difference moment, sum entropy and entropy values proved to be very

important feature descriptors that showed differences between different passages of SHEDs and between SHEDs and WJMSCs.
• In terms of biomarker expression, CD73-PerCP Cy5.5 and CD44-V450 expression levels also showed additional differences in patterns.

Results showed that CD44 was expressed over a larger area when compared with CD73 among the SHEDs.
Conclusion
• Development of the MSCProfiler was an approach to analyze the imaging flow cytometry data that added valuable information from the

images concurrently with the conventional flow cytometry analysis. The hallmark of this screening pipeline was the identification and
removal of nontarget images and extraction of features from single cell brightfield and fluorescent images of single cells. This was an
important value addition to answering the respective biological questions of the mesenchymal stem cells.

Supplementary data
To view the supplementary data that accompany this paper please visit the journal website at: www.future-science.com/doi/
suppl/10.2144/btn-2023-0048
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Introduction

Live-cell imaging enables acquisition of phase contrast images and provides an ideal platform to study multi-faceted 
biological paradigms in drug discovery. This is vital to our understanding of human diseases and treatment strategies.  
The movement of these models towards increasingly complex physiologically relevant ones, including patient-derived cells 
and induced pluripotent stem cells (iPSCs), has concurrently driven the need for label-free methods that are non-perturbing 
to deliver deeper biological insights.1, 2 The elimination of fluorescent reporters reduces workflow time, ensures that experimental 
outcomes are not attributed to the label, or labeling process itself, and is non-perturbing for when fluorescent labeling is not 
possible, such as when using rare or sensitive cell types.3, 4

Incorporating artificial intelligence (AI) into image analysis workflows has enabled powerful quantification of a wide range of 
cellular models, allowing researchers to make data-driven decisions and understand disease at a more granular level.5 These 
leading-edge technologies, based on neural-network algorithms, are much more complex than traditional image analysis and 
facilitate more robust segmentation of heterogenous cell morphologies whilst minimizing user-introduced bias.2 However, 
there exists several barriers to the widespread use of AI in image analysis, including hardware requirements, knowledge of 
training and testing methods, access to robust datasets for training, pre- and post-processing image analysis pipelines with  
a vast amount of data, and the general applicability of algorithms across cell types.6

Keywords or phrases:
Artificial intelligence (AI), Label-free cell analysis, 
cytotoxicity assay, live-cell analysis, cell viability, 
advanced image analysis

Find out more: www.sartorius.com/incucyte-ai-cell-health-software



In this application note, we describe an automated, robust 
solution for label-free cell segmentation and live/dead 
classification of individual cells using integrated AI-based 
software. The Incucyte® AI Cell Health Analysis Software 
Module, driven by trained convolutional neural networks 
(CNN), allows us to reliably monitor cell viability in a non-
perturbing unbiased manner with minimal user input. 

Here, we show validation of the analysis software across a 
wide range of live and dead adherent and non-adherent 
cell types and exemplify how this approach can provide 
high-throughput, physiologically relevant insights into cell 
health through accurately predicting cell death across 
multiple treatments. 
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Assay Principle

The Incucyte® AI Cell Health Analysis Software Module 
enables label-free quantification of live or dead cells. The 
analysis module uses trained CNNs, which automatically 
analyze images to segment individual cells and classify them 
as live or dead, all in one step. This streamlined workflow 
(Figure 1) requires little user input, providing unbiased 
results which can be directly compared across assays.

Phase contrast images are acquired using AI Scan 
acquisition with 10x or 20x objectives. These images can be 
analyzed using Incucyte® AI Cell Health Analysis Software 
Module which provides metrics such as Total Cell Count (All 
Objects), as well as the number and percentage of live and 
dead cells. In cases where optional fluorescence images are 
acquired, the Mean and Total Integrated Intensity within all 
cells, as well as the live or dead subpopulations, will be 
provided. Fluorescence classification can be performed as 
an additional analysis, again providing metrics describing 
the count and percentage of high vs low fluorescence 
within total cells, and within live or dead subpopulations.
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Figure 1: �Incucyte® AI Cell Health Analysis Workflow. 

Phase Contrast Images Are Acquired and Processed Using Neural Networks (CNN), to Automatically Segment and Classify Cells as Live or Dead.

Precise segmentation provides accurate cell count data 
even at high cell confluence (up to 99% depending on cell 
morphology), yielding reliable proliferation data. Label-free 
classification of cells as live or dead enables quantification 
of cell viability within a physiologically relevant and non-
perturbing environment. Combining this label-free analysis 
with optional fluorescence readouts from the live or dead 
subpopulations provides additional insight into 
mechanisms of cell death.
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AI-Driven Cell Segmentation

The AI Cell Health segmentation model was trained using 
phase contrast images which were manually annotated to 
identify the boundary of individual cells. A wide diversity of 
over 2 million individual cells were annotated including 
adherent and non-adherent cell types at a range of 
confluences, both healthy and apoptotic; adherent cell 
examples covered a wide range of morphologies. This broad 
spectrum of cells ensures that the final trained model is 
highly versatile, competently segmenting a multitude of cell 
types - even those which were not included within the 
training and validation datasets.7

The resulting segmentation is highly accurate even in 
confluent images and adapts to a multitude of cell 
morphologies – even where these are present within the 
same image. Figure 2 shows the AI segmentation applied  
to a highly clustering breast cancer cell line (MCF-7), an 
invasive epithelial-like cell line (MDA-MB-231), flat and 
transparent primary cells (primary rat astrocyte), and a 
non-adherent B cell line (Ramos). In addition, dead cells  
are accurately delineated (HMC3 cells treated with 
camptothecin, 1.1 µM), as are monocytes in the presence  
of pHrodo® Bioparticles® for Incucyte® (RAW 264.7 in the 
presence of E. coli bioparticles, 10 µg per well).

Figure 2: �AI Cell Health Analysis Accurately Segments a Wide Range of Cell Types With Diverse Morphologies, 
Including Apoptotic Cells and Cells in the Presence of Bioparticles.

MCF-7

Primary rat astrocyte

MDA-MB-231

Ramos

HMC3 + Camptothecin

RAW 264.7 + E. coli
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bioparticles are engulfed (Figure 3B), and the total intensity 
is dependent on the densities of both bioparticles and cells 
(Figure 3C). Fluorescence classification of cells as high or 
low intensity enables identification of cells which are 
phagocytic (Figure 3D). At 30 µg/mL bioparticles, around 
40% of the cells are phagocytic; this percentage decreases 
as the amount of bioparticles decreases. Interestingly, the 
percentage of phagocytic cells is independent of the cell 
seeding density but increases with higher bioparticle 
density, suggesting the bioparticles themselves have an 
activating effect.

The segmentation model is trained specifically to detect 
cells and therefore ignores most non-cell objects. Cell 
segmentation is thus possible even in the presence of 
debris, compound precipitate, or bioparticles. Figure 3 
demonstrates this advantage, showing primary 
macrophages accurately segmented in the presence of 
pHrodo® E. coli Bioparticles® for Incucyte® (10 µg/mL, 24 hr 
post treatment). As the bioparticles are engulfed, they are 
processed into acidic lysosomes, and the low pH causes 
the pHrodo® label to increase in fluorescence intensity. 
Quantification of fluorescence within the AI-masked cell 
boundary shows increasing intensity over time as the 

Figure 3: �Robust Cell Segmentation Enables Accurate Quantification of Phagocytic Cells. 

Images show primary macrophages 12 hr post treatment with pHrodo® E. coli Bioparticles® for Incucyte® (A). Non-engulfed bioparticles are visible in 
the phase contrast image while engulfed bioparticles fluoresce (green). AI Cell Segmentation shows accurate masking of cells alone, and 
fluorescence classification indicates phagocytic (magenta outline, high fluorescence) and non-phagocytic (blue outline, low fluorescence) cells. 
Time course demonstrates increasing fluorescence intensity within the segmented cell boundary over 12 hr (B). The increase in fluorescence is both 
cell- and bioparticle-dependent (C), while the percentage of phagocytic cells is dependent on bioparticle concentration but not cell density (D). 
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Images of HeLa cells treated with camptothecin (1.1 µM, 
24 hr) with applied live (top image) and dead (bottom 
image) classification masks (Figure 4A) indicate a high 
correlation between cells which were analyzed using both 
label-free analysis (outline class mask) and fluorescence 
analysis (filled class mask). Time-course analyses of % dead 
cells induced by increasing concentrations of cisplatin (top 
graph, label-free analysis; bottom graph, fluorescence 
analysis) display similar time and concentration dependent 
responses (Figure 4B). The concentration response curves 
compare % death at 72 hr for 4 cytotoxic compounds 
calculated using label-free and fluorescence analysis 
(Figure 4C).

This validation was performed across a wide range of 
adherent and non-adherent cell lines in monoculture and 
confirmed that the label-free Incucyte® AI Cell Health 
Analysis accurately identifies cell death induced by 
compounds with different efficacies and mechanisms 
of action.

AI-Driven Live/Dead Classification

The AI model for classification was trained using pairs of 
phase contrast and fluorescence images of cells treated 
with cytotoxic compounds in the presence of Incucyte® 
Cytotox Dye. These paired images enable the neural 
network to infer cell death responses from the phase 
contrast image alone. These two AI models were combined 
to form the Incucyte® AI Cell Health Analysis Software 
Module, which was validated on multiple cell types using 
fluorescent markers for comparison. During validation 
studies, cells were treated with cytotoxic compounds in the 
presence of Incucyte® Cytotox Dye which enters non-viable 
cells, increasing their fluorescence intensity. Quantification 
of cell death was performed using both AI Cell Health Live | 
Dead classification (AI-driven, label-free analysis) and 
fluorescence classification of Cytotox positive cells. Cell 
image classification, evaluation of cell death time courses, 
and concentration response curves determining 
compound efficacy were used to confirm that cells 
exhibiting high fluorescence of Incucyte® Cytotox Dye are 
also being classed as dead by the Incucyte® AI Cell Health 
Analysis Software Module (Figure 4).

Figure 4: �AI Cell Health Analysis Generates Comparable Cytotoxicity Data to Standard Fluorescence Methods.

HeLa cells were treated with concentration ranges of 4 different cytotoxic compounds in the presence of Incucyte® Cytotox Dye. Images show HeLa 
cells 24 hr post treatment with camptothecin. Top image (A) shows classification of live cells using Incucyte® AI Cell Health label-free analysis (blue    
outline) and fluorescence analysis of Cytotox Negative cells (yellow fill). Bottom image shows classification of dead cells (red outline) and cytotox 
positive cells (green fill) in the same image. Time courses (B) show the percentage of dead cells over time using label-free analysis (top row) or 
fluorescence classification (bottom row) of HeLa cells treated with increasing concentrations of cisplatin. Concentration response curves (C) plot cell 
death at 72 hr post treatment of camptothecin (CMP, black), staurosporine (STP, grey), doxorubicin (DOX, teal) and cisplatin (CIS, magenta). The table 
indicating log IC50 values confirms that across compound with different mechanisms of action the efficacy values as calculated by label-free and 
fluorescence methods are comparable.
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Vehicle control and similar compounds induced no 
inhibitory effect on cell growth (% confluence) and cell 
viability (% live) – these cluster in the top right of the scatter 
plot. Cytostatic compounds typically reduce cell growth but 
do not reduce cell viability – these compounds cluster in 
the top middle. In contrast, cytotoxic compounds reduce 
both cell growth and viability, clustering in the bottom left 
part of the plot.

Incucyte® AI Cell Health Analysis is conducive to compound 
screen experiments in 96 and 384- well microplates. The 
highly adaptable analysis can be applied to cells with a wide 
range of morphologies providing directly comparable 
datasets, and visualization of the % dead cells per well in 
microplate view (Figure 5A) enables rapid and simple 
identification of cytotoxic compounds or conditions. End-
point analysis at 48 hr post-treatment (Figure 5B) was used 
to confirm assay window and identify mechanisms of action 
between the vehicle (teal point) and positive control (high 
camptothecin, magenta point).  

Figure 5: �Analysis of Compound Effects in Non-adherent Cells.

Jurkat cells were seeded into 96-well plates coated with poly-L-ornithine and briefly centrifuged to lightly adhere to the plate surface.  
Cells were treated with 14 compounds in triplicate wells with high and low concentrations of each and placed into the Incucyte® to acquire phase 
contrast images every 2 hr for 3 days. Incucyte® AI Cell Health Analysis was used to quantify the % dead cells in each image over time (A). Mecha-
nism of action was examined by correlating cell viability (AI Cell Health % live) with cell growth (AI Confluence) at 48 hr post treatment. Vehicle 
(teal) conditions displayed high viability and high growth; cytostatic compounds exhibit reduced cell growth but viability remains high; cytotoxic  
compounds including positive control camptothecin (10 µM, magenta) reduce both viability and growth.
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Apoptosis Dye was included. Phase contrast and 
fluorescence images were acquired every 2 hr for 3 days. 
Total cell death was quantified using Incucyte® AI Cell 
Health Analysis and indicated that staurosporine induced 
rapid cell death in the presence of all concentrations of 
Z-VAD-FMK (Figure 6A). Within the dead cell population, 
caspase activation was measured using fluorescence 
classification. Time course (Figure 6B) shows that the 
number of caspase positive dead cells decreased as the 
concentration of Z-VAD-FMK increased with efficacy  
log IC50 = -4.3 M (Figure 6C).

Combined Label-Free and Fluorescence Analyses  
Yield Additional Insight Into Mechanism of Apoptosis
Incucyte® AI Cell Health Analysis Software Module provides 
label-free analysis of live and dead cells, however label-free 
analysis also enables deeper insight into cell behavior when 
combined with optional fluorescence measurements. 
Staurosporine is known to induce cell death via both 
caspase-dependent and caspase-independent 
mechanisms. To examine these pathways, MDA-MB-231 
cells were treated with staurosporine (1 µM) in the presence 
of pan-caspase inhibitor Z-VAD-FMK (3 – 250 µM). 
To measure caspase activation, Incucyte® Caspase 3/7 

Figure 6: �Label-Free Analysis With Additional Fluorescence Information Reveals Mechanisms of Apoptosis. 

MDA-MB-231 cells were treated with staurosporine (1 µM, magenta) in the presence of caspase inhibitor Z-VAD-FMK (3 - 250 µM, grey) and Incucyte® 
Caspase 3/7 Apoptosis Dye. Total cell death was quantified using AI Cell Health label-free classification, and time course indicates that staurosporine 
induces cell death in the presence of all concentrations of Z-VAD-FMK (A). Fluorescence classification of caspase activity within the dead cell  
population reveals that Z-VAD-FMK reduces the number of caspase positive dead cells in a time-and concentration-dependent manner (B, C).
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Summary & Conclusion

Incucyte® AI Cell Health Analysis Software Module enables 
accurate cell segmentation and live/dead classification. 
Using trained neural networks integrated into the Incucyte® 
live-cell analysis workflow, we have enabled user-friendly 
deployment of AI models for cell analysis which provide 
label-free quantification of cell death over time. Label-free 
analysis yields non-perturbing quantification of cytotoxicity 
which is increasingly vital when using precious patient-
derived cell types. However by combining the label-free 
analysis with optional fluorescence readouts, additional 
information on the mechanisms of apoptosis can also be 
revealed.
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High-resolution visualization and assessment of basal and OXPHOS-induced 
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ABSTRACT
Mitochondria are susceptible to damage resulting from their activity as energy providers. Damaged 
mitochondria can cause harm to the cell and thus mitochondria are subjected to elaborate quality- 
control mechanisms including elimination via lysosomal degradation in a process termed mitophagy. 
Basal mitophagy is a house-keeping mechanism fine-tuning the number of mitochondria according 
to the metabolic state of the cell. However, the molecular mechanisms underlying basal mitophagy 
remain largely elusive. In this study, we visualized and assessed the level of mitophagy in H9c2 
cardiomyoblasts at basal conditions and after OXPHOS induction by galactose adaptation. We used 
cells with a stable expression of a pH-sensitive fluorescent mitochondrial reporter and applied state- 
of-the-art imaging techniques and image analysis. Our data showed a significant increase in acidic 
mitochondria after galactose adaptation. Using a machine-learning approach we also demonstrated 
increased mitochondrial fragmentation by OXPHOS induction. Furthermore, super-resolution micro
scopy of live cells enabled capturing of mitochondrial fragments within lysosomes as well as dynamic 
transfer of mitochondrial contents to lysosomes. Applying correlative light and electron microscopy 
we revealed the ultrastructure of the acidic mitochondria confirming their proximity to the mito
chondrial network, ER and lysosomes. Finally, exploiting siRNA knockdown strategy combined with 
flux perturbation with lysosomal inhibitors, we demonstrated the importance of both canonical as 
well as non-canonical autophagy mediators in lysosomal degradation of mitochondria after OXPHOS 
induction. Taken together, our high-resolution imaging approaches applied on H9c2 cells provide 
novel insights on mitophagy during physiologically relevant conditions. The implication of redundant 
underlying mechanisms highlights the fundamental importance of mitophagy.
Abbreviations: ATG: autophagy related; ATG7: autophagy related 7; ATP: adenosine triphosphate; 
BafA1: bafilomycin A1; CLEM: correlative light and electron microscopy; EGFP: enhanced green 
fluorescent protein; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; OXPHOS: 
oxidative phosphorylation; PepA: pepstatin A; PLA: proximity ligation assay; PRKN: parkin RBR E3 
ubiquitin protein ligase; RAB5A: RAB5A, member RAS oncogene family; RAB7A: RAB7A, member RAS 
oncogene family; RAB9A: RAB9A, member RAS oncogene family; ROS: reactive oxygen species; SIM: 
structured illumination microscopy; siRNA: short interfering RNA; SYNJ2BP: synaptojanin 2 binding 
protein; TEM: transmission electron microscopy; TOMM20: translocase of outer mitochondrial mem
brane 20; ULK1: unc-51 like kinase 1.
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Introduction

Mitochondria are the main energy producing organelles in 
eukaryotic cells and are also central in the control of redox 
homeostasis, Ca2+ signaling, iron metabolism, innate immu
nity and programmed cell death [1–5]. In most cell types, 
mitochondria are arranged in highly dynamic networks, con
trolled by constant fusion and fission events [6] driven by 
mitochondria movements along the cytoskeleton [7]. Events 
such as cell cycle progression, cellular differentiation, oxida
tive stress, metabolic perturbation and engagement in 

programmed cell death, all lead to significant alterations in 
the architecture of the mitochondrial network [8].

Mitochondria are dependent on oxygen for energy produc
tion in the form of adenosine triphosphate (ATP) through 
oxidative phosphorylation (OXPHOS). Reactive oxygen spe
cies (ROS) are formed as by-products during OXPHOS and 
thus mitochondria are susceptible to mitochondrial DNA 
mutations and protein misfolding that can ultimately lead to 
mitochondrial damage [9]. Damaged mitochondria result in 
energy-generation defects, the increased production of
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harmful reactive oxygen species and can trigger programmed 
cell death when the damage is beyond repair. Hence, mito
chondria are subjected to elaborate quality control mechan
isms [10]. Damaged mitochondria can be selectively 
eliminated by one such mechanism, termed mitophagy, 
dependent on the autophagy machinery [11–13]. Mitophagy 
is often preceded by fission of damaged mitochondria (or 
parts of mitochondria) from the mitochondrial network, fol
lowed by sequestration by a double-membrane-bound auto
phagosome and culminates in fusion with a lysosome where 
the mitochondria are degraded by resident acidic hydrolases. 
There are multiple signaling pathways that govern autopha
gosome engulfment of damaged mitochondria [14].

Macroautophagy/autophagy initiation in mammalian cells 
is driven by the ULK1 (unc-51 like kinase 1) protein kinase 
complex that phosphorylates and activates key downstream 
mediators involved in autophagosome formation [15]. 
Activation and recruitment of the ULK1 complex has been 
implicated in mitophagy [16–19]. Autophagosome formation 
involves lipidation of the Atg8 (autophagy-related 8)-family 
proteins such as MAP1LC3B (microtubule associated protein 
1 light chain 3 beta). Here, Atg8-family proteins are conju
gated to phosphatidylethanolamine (PE) in the phagophore 
membrane, representing one of the key molecular signatures 
of canonical autophagy [20]. Atg8-family protein lipidation is 
a multistep process driven by the enzymatic activity of core 
autophagy proteins: the E1-like ATG7 (autophagy related 7), 
the E2-like ATG3 (autophagy related 3) and the E3-like 
ATG12–ATG5-ATG16L1 complex [21–23].

Selected cargo such as mitochondria destined for degrada
tion are connected to the forming autophagosome through 
binding to Atg8-family proteins in a ubiquitin dependent or 
independent manner [10]. Intriguingly, non-canonical path
ways, independent of ATG7 and Atg8-family protein lipida
tion, have also been described for lysosomal clearance of 
damaged mitochondria. These include alternative autophagy 
[24,25], microautophagy involving formation of small mito
chondria derived vesicles (MDVs) [26] and degradation 
through the endo-lysosomal pathway involving the endosomal 
small GTPase RAB5A (RAB5A, member RAS oncogene 
family) [27]. Furthermore, non-canonical mitophagy 
described in mouse cardiomyocytes depends on ULK1 and 
the small GTPase RAB9A (RAB9A, member RAS oncogene 
family) [28]. Interestingly, mitochondria and lysosomes can 
also directly interact through the small GTPase RAB7A 
(RAB7A, member RAS oncogene family) [29].

The most studied ubiquitin-dependent mitophagy is known 
as PINK-PRKN-dependent mitophagy, orchestrated by the 
enzyme 3 (E3) ubiquitin ligase PRKN (parkin RBR E3 ubiquitin 
protein ligase) and the protein kinase PINK1 (PTEN induced 
putative kinase 1) [30]. Pioneering work for elucidation of 
PRKN-mediated mitophagy relied on induction of mitophagy 
by using cytotoxic agents targeting mitochondria, resulting in 
membrane potential dissipation of the entire network and loss of 
most of the mitochondria [31,32]. In contrast, basal mitophagy is 
considered a house-keeping mechanism where mitochondrial 
content is fine-tuned depending on the metabolic state of the 
cell [9,14]. Thus, use of mitochondria depolarizing agents is not 

optimal to simulate physiological situations. Notably, the mole
cular mechanisms governing basal level of mitophagy in cells 
under physiological conditions remain mostly elusive.

In this work we set out to visualize and assess mitophagy in 
H9c2 cardiomyoblasts during normal culture conditions and 
after OXPHOS induction by galactose adaptation. We exploited 
H9c2 cells expressing pH-sensitive tandem mCherry-enhanced 
green fluorescent protein (EGFP) fluorescent mitochondrial 
reporters and applied state-of-the-art imaging methods for 
a detailed characterization of mitochondrial fragments within 
acidic compartments. Our results provide novel insights into the 
dynamics and regulation of lysosomal degradation of mitochon
dria in physiologically relevant settings.

Results

H9c2 cells with a pH-sensitive fluorescent mitochondrial 
reporter display induced formation of acidic 
mitochondria when adapted to galactose

In order to monitor lysosomal degradation of mitochondria 
in rat cardiac myoblasts (H9c2) we established stable cell 
lines with constitutive expression of a fluorescent (mCherry- 
EGFP) tandem-tagged trans-membrane (TM) domain of the 
outer mitochondrial membrane protein SYNJ2BP/OMP25 
(synaptojanin 2 binding protein) [33–35] or tandem tagged 
full-length TOMM20 (translocase of the outer mitochondrial 
membrane 20) protein. The mitochondria thus display both 
green (EGFP) and red (mCherry) fluorescence and appear 
yellow in merged images of the green and the red channel 
during fluorescence imaging of the cells. The EGFP fluores
cence is quenched at low pH while the mCherry fluorescence 
is acid stable (Figure 1A) [36]. Therefore, during imaging, 
mitochondria or parts of mitochondria in acidic compart
ments (late endosomes or lysosomes) appear as red-only 
structures in merged images. Under normal culture condi
tions, red-only dots were easily detected by fluorescence 
microscopy of stably transfected H9c2 cells, thus enabling 
monitoring of basal levels of lysosomal acidification of 
engulfed mitochondria (Figure 1B). In order to investigate 
the effect of a metabolic shift on mitochondria degradation, 
the cells were adapted to galactose in glucose-free growth 
medium for a minimum of 7 days. In this way the cells 
become mostly dependent on OXPHOS for ATP production 
[37]. As a control, the cells were kept in normal high glucose 
containing media for the same time-period and propagated 
simultaneously. The cells were then fixed and imaged by 
fluorescence microscopy (Figure 1B). Image analysis soft
ware was used to assess the number of cells containing red- 
only mitochondria as well as the number of red-only dots 
per cell (Figure S1A). Our data demonstrate that during 
normal culture conditions approximately 50% of the 
mCherry-EGFP-SYNJ2BP-TM cells displayed acidic mito
chondria (Figure 1C). Interestingly, a significant increase in 
the number of cells with acidic mitochondria was detected in 
the galactose-adapted cells (approximately 90%) with an 
almost a two-fold increase in the number of red-only dots 
per cell (Figure 1C). Similarly, the TOMM20-mCherry- 
EGFP H9c2 cells displayed an increase in the number of red-
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Figure 1. Reporter H9c2 cells display an increase in acidic mitochondria during galactose adaption. (A) An illustration of the pH-sensitive tandem fluorescent reporter 
mCherry-EGFP at different pH levels (red and green at neutral pH and red-only at acidic pH). (B) Representative widefield fluorescence microscopy images of H9c2 
cells with a stable expression of the mCherry-EGFP-SYNJ2BP-TM reporter grown in glucose (GLU) or adapted to galactose (GAL) media. (C) Quantification of the 
percentage of cells containing red-only dots and quantification of the number of red-only dots per cell in cells with red-only dots in glucose vs galactose media for 
cells with the mCherry-EGFP-SYNJ2BP-TM reporter. (D) Representative widefield fluorescence microscopy images of H9c2 cells with a stable expression of the 
TOMM20-mCherry-EGFP reporter grown in glucose (GLU) or adapted to galactose (GAL) media. (E) Quantification of the percentage of cells containing red-only dots 
and quantification of the number of red-only dots per cell in cells with red only dots in glucose vs galactose media for cells with the TOMM20-mCherry-EGFP 
reporter. Data presented in (C) and (E) is shown as mean ± SEM from 3 independent experiments, with more than 100 cells in each condition. The individual 
datapoints are per frame cell averages.
Note: * p < 0.05, ** p < 0.01, *** p < 0.001 and **** p < 0.0001. Scale bar: 10 μm. 
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only dots per cell when adapted to galactose (Figure 1D,E). 
In comparison, 16 h of hypoxia (0.3% O2), a well-known 
inducer of mitophagy [38], resulted in an equivalent increase 
in the number of red-only structures per cell (Figure S1B). 
Furthermore, using transient transfection of the pH-sensitive 
mt-Keima probe targeted to the mitochondrial matrix 
[39,40], we detected a significant increase in acidic mito
chondria per cell in galactose adapted H9c2 cells (Figure 
S1C). To summarize, galactose adaptation of H9c2 cells 
induced lysosomal engulfment of mitochondria visualized 
by different pH-sensitive mitochondria targeted probes.

Galactose adaptation of H9c2 cells results in more 
fragmented mitochondria morphology, elevated 
mitochondrial respiration and higher susceptibility to 
mitochondrial damage.

Degradation of mitochondria is commonly preceded by mito
chondrial fission or fragmentation [41,42]. We performed 
computational image analysis of mitochondrial morphology 
in the tandem-tagged H9c2 cells using machine learning. This 
enabled classification and quantification of the mitochondria 
morphology as networks, rods or dots as described previously 
[43,44]. We used confocal images of fixed mCherry-EGFP- 
SYNJ2BP-TM H9c2 cells grown under normal culture condi
tions or adapted to galactose (Figure 2A). Our computational 
analysis revealed that for both growth conditions, most of the 
mitochondria were in a network but for the galactose adapted 
cells the percentage was significantly lower and there were 
more mitochondria classified as rods and dots (Figure 2B). 
Furthermore, the average length of rod-shaped mitochondria 
as well as mitochondrial networks was significantly shorter in 
the galactose adapted cells (Figure 2C). Thus, our morphology 
analysis showed more fragmented mitochondria in galactose 
adapted cells. To demonstrate that galactose adaptation of the 
cells in fact induces OXPHOS, we characterized mitochon
drial function by performing high-resolution respirometry 
using an Oxygraph-2k (Oroborus Instruments). Our results 
showed that cells adapted to galactose displayed higher mito
chondrial respiration and higher ATP-linked respiration in 
comparison to cells under normal culture conditions, indica
tive of induced OXPHOS (Figure 2D). For investigation of the 
level of mitochondrial ROS production we applied the mito
chondria-targeted superoxide indicator MitoSOX Red in 
H9c2 cells in glucose or adapted to galactose. This indicator 
gives rise to a fluorescent signal in the presence of mitochon
dria superoxide [45]. To measure mitochondrial ROS induc
tion, we subjected these cells to antimycin A treatment for 4 h. 
Live confocal imaging of the cells (Figure S2) and Flow 
cytometry (Figure 2E) revealed substantially higher mitochon
drial ROS production in galactose adapted cells in comparison 
to cells in glucose after antimycin A treatment. This demon
strates that the cells in galactose have become more dependent 
on their mitochondria and thus are more susceptible to mito
chondrial toxicants [46]. Taken together, these results are 
consistent with OXPHOS-induced degradation of mitochon
dria after galactose adaptation as indicated by the increase in 
red-only structures.

Red-only structures stain positive for markers of the 
different mitochondrial compartments but are devoid of 
mitochondrial membrane potential.

To verify targeting of the mCherry-EGFP-SYNJ2BP-TM repor
ter to the mitochondria in H9c2 cells and to demonstrate that 
red-only structures contained other mitochondrial markers, we 
performed immunofluorescence staining with antibodies 
against the outer mitochondrial membrane proteins TOMM20 
and FIS1 (fission, mitochondrial 1) as well as the inner mem
brane protein ATP5F1A/ATP5A (ATP synthase F1 subunit 
alpha) and the matrix protein PDHA1 (pyruvate dehydrogenase 
E1 alpha 1). As expected, our results showed a high degree of 
colocalization of the tandem-tagged reporter with all the differ
ent mitochondrial markers, indicating correct targeting of the 
reporter to the mitochondria (Figure 3A). In addition, several of 
the red-only structures stained positive for the markers of the 
different mitochondrial compartments, confirming the presence 
of mitochondrial proteins in addition to the reporter in an 
acidic environment (Figure 3A enlarged). For assessment of 
mitochondrial membrane potential, we incubated the cells 
with MitoTracker Deep Red and performed live confocal ima
ging of the cells. Interestingly, the red-only structures did not 
stain positive for MitoTracker Deep Red, indicating loss of 
membrane potential (Figure 3B). In summary, the red-only 
structures represent fragments of mitochondrial origin that 
have lost the membrane potential.

Functional lysosomes give rise to red-only structures

To study colocalization of red-only mitochondria and acidic 
organelles (endo/lysosomes) we utilized LysoTracker Deep 
Red staining of the mCherry-EGFP-SYNJ2BP-TM H9c2 cells 
and applied three-dimensional (3D) structured illumination 
microscopy (SIM) on the cells after fixation. The obtained 
super-resolution images clearly demonstrated the presence of 
the reporter on the targeted mitochondrial outer membrane 
(Figure 4A). Furthermore, our results showed that most of the 
red-only mitochondria were positive for LysoTracker Deep Red 
staining, indicating colocalization of red-only mitochondria and 
lysosomes (Figure 4Ai,ii). To establish that the increased 
appearance of red-only mitochondria in galactose adapted 
H9c2 cells was in fact dependent on low pH inside lysosomes 
(or late endosomes) and that the reporter responded dynami
cally to lysosomal pH, we subjected the galactose adapted cells 
to bafilomycin A1 (BafA1) treatment for 6 h (Figure 4B). BafA1 
inhibits the vacuolar type H+-ATPase (V-ATPase) and results in 
pH elevation in the lysosome lumen leading to a subsequent 
inhibition of resident hydrolases. In addition, BafA1 can impair 
fusion between autophagosomes and lysosomes [47]. As antici
pated, the number of cells with red-only mitochondria as well as 
the number of these per cell was abolished in the presence of 
BafA1 (Figure 4C). In contrast, treatment with inhibitors of 
lysosomal cathepsins, pepstatin A (PepA) and E64d, does not 
affect acidification of lysosomes but hampers cargo degradation 
[47]. Indeed, treatment of the H9c2 cells with the cathepsin 
inhibitors for 6 or 12 h resulted in an increase in the number of 
cells with red-only mitochondria as well as the abundance of 
red-only dots per cell, demonstrating the importance of
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Figure 2. Mitochondria morphology analysis, mitochondrial respiration and ROS measurements indicate more fragmented mitochondria and OXPHOS dependance 
after galactose adaptation. (A) Morphological analysis of confocal images of cells grown in glucose vs galactose media. A representative skeletonization mask is 
depicted for each culture condition with the different morphology classes indicated in different colors. Rules for morphology classes are displayed at the bottom. (B) 
Overview of the distribution of mitochondria morphology classes in percentage for the two different growth conditions. The distribution for glucose vs galactose 
adaption is 5.16% vs 7.14% for dots, 13.79% vs 17.58% for rods and 81.04% vs 75.28% for network. (C) Quantification of the average length of mitochondria in the 
rod and network morphology classes for cells grown in glucose vs galactose. (D) High-resolution respirometry performed in an Oxygraph-2k (Oroboros Instruments). 
Oxygen consumption rate, OCR (pmolO2/s × 106 cells) of cells grown under normal conditions (high glucose) or adapted to galactose was corrected for residual 
oxygen consumption (ROX) and normalized to the cell number per ml in the chambers. The values displayed in the graph are from four independent experiments ±  
SEM, indicating mitochondrial respiration (basal respiration minus ROX) and ATP-linked respiration (basal respiration minus proton leak), respectively. (E) Flow 
cytometry analysis of H9c2 cells grown in normal media with glucose or adapted to galactose. The antimycin A (AMA) treated/untreated cells were stained with 
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lysosomal cathepsins in degradation of red-only dots 
(Figure 4D). We also demonstrated the same effect of the 
lysosomal inhibitors in the H9c2 TOMM20-mCherry-EGFP 
cells (Figure S3). Taken together, these results indicate that 
functional lysosomes are a prerequisite for the appearance and 
degradation of acidic mitochondria.

Capturing formation of acidic mitochondria by 
super-resolution imaging

To visualize the formation of acidic mitochondria we per
formed three-dimensional (3D) structured illumination 
microscopy (SIM) of live mCherry-EGFP-SYNJ2BP-TM 
H9c2 cells during normal culture conditions and in galactose 
adapted cells after LysoTracker Deep Red staining. 
Interestingly, in live videos from cells in both growth condi
tions (Video S1 and S2) we could detect a LysoTracker- 
positive structure containing a mitochondrial fragment of 
around 500 nm with both red and green fluorescence, indicat
ing recent engulfment since the EGFP fluorescence was still 
detectable (Figure 5A,B). We identified these structures in the 
start of the videos and thus were unable to trace their forma
tion back in time (Figure 5A). The majority of LysoTracker 
positive structures however did not contain any traces of 
EGFP fluorescence, possibly reflecting their more “mature” 
or degradative state. Notably, there is a significant time-delay 
between capturing the different channels during live 3D SIM 
imaging resulting in a slightly shifted appearance of the red 
and the green fluorescence of the same mitochondrial struc
ture (Figure 5A). This makes it challenging to follow the 
formation of red-only structures in live SIM videos. To over
come this issue, we stained cells with LysoView 650 and used 
Airyscan FAST imaging to record videos at high temporal and 
spatial resolution (500 frames, frame time 1.01 s), without 
time delay between channels (Video S3–S5). As expected, we 
saw an almost complete overlap between LysoView 650 and 
red-only dots, confirming their acidic nature. Furthermore, 
the highly motile red-only dots were observed in close proxi
mity with tubular mitochondria (Figure 6A). The time-lapse 
imaging revealed the red-only dots engaged in numerous 
transient contacts with the tubular mitochondria (Figure 6A, 
2:34; Figure 6B, 2:19; Figure 6C, 0:24) lasting from less than 
30 seconds to several minutes. Following such contacts, 
a mitochondrion was in some instances seen to alter its 
shape to become notably pulled toward red-only dots (see 
mitochondrion in contact with two red-only dots in the 
enlarged view in Figure 6C; compare timepoints around 1:00 
to 2:45 in video S5). Furthermore, we observed several 
instances of apparent rapid transfer of material between 
a mitochondrion and a red-only dot (Figure 6C enlarged 
views from 1:36 to 2:12). Importantly, in such cases EGFP 
fluorescence was only briefly detectable at the intersection 
between the structures, suggesting uptake into an acidic 

lumen and an almost instant quenching of the EGFP fluor
ophore. Taken together, by applying 3D SIM and Airyscan 
FAST live cell imaging we could capture lysosomal engulf
ment of mitochondrial contents.

CLEM reveals red-only structures as single membrane 
vesicles containing collapsed mitochondria and lamellar 
lysosomes

Correlative light and electron microscopy (CLEM) enables the 
determination of ultrastructural features of fluorescently 
labeled structures in a cellular context. For this type of high- 
resolution image analysis of the red-only dots we seeded our 
tandem-tagged SYNJ2BP-TM H9c2 cells grown under normal 
conditions or adapted to galactose on gridded dishes and 
stained the cells with LysoTracker Deep Red prior to fixation. 
Confocal imaging of the fixed cells and the grid after 4′,6- 
diamidino-2-phenylindole (DAPI) staining allowed us to relo
cate the coordinates of cells of interest after resin embedding. 
Serial section ultramicrotomy was performed on selected posi
tions/cells, and the sections were then imaged by transmission 
electron microscopy (TEM). By overlay of confocal images 
and TEM images we could identify red-only mitochondria 
positive for LysoTracker Deep Red as quite electron dense 
structures with features typical of autophagic vacuoles, with 
varying size and content in cells under normal conditions 
(Figure 7A). The ultrastructural characteristics of red-only 
dots did not seem to depend significantly on their size, since 
smaller red-only dots showed similar features as larger ones 
(Figure S4A). In contrast, mitochondria with both EGFP and 
mCherry fluorescence had a tubular shape and normal cristae 
(Figure 7Avi). For the galactose adapted cells, the red-only 
structures were more homogenous and less electron dense 
(Figure 7B). Of note, when inspecting multiple consecutive 
sections of the same cells (Figure 7Biv-v), red-only structures 
were frequently seen in close vicinity (or in contact) with both 
the tubular mitochondrial network and the ER, as well as with 
electron-dense structures reminiscent of lysosomes 
(Figure 7Bvi). Serial section imaging revealed the ultrastruc
ture of these red-only/LysoTracker-positive dots as single 
membrane vesicles surrounding remnants of what appeared 
to be collapsed mitochondria (no cristae) and an electron 
dense multilamellar lysosome (Figure 7C). To investigate the 
ultrastructure of red-only dots in a state of hampered lysoso
mal turnover, we performed CLEM after treatment with PepA 
and E64d, on cells grown in both glucose and galactose 
(Figure S4B and S4C, respectively). As expected, we observed 
an increased number of red-only dots which appeared heavily 
aggregated and had an increased electron density after lyso
somal inhibition. Our results are consistent with increased 
lysosomal degradation of mitochondria after galactose

mitoSOX Red and compared with unstained cells as a negative control. During normal culture conditions, antimycin A treatment resulted in approximately 47% 
mitoSOX Red positive cells, while in galactose 91% of the cells were mitoSOX Red positive. The data depicted represent one of three independent experiments. Data 
presented in (B) and (C) is shown as mean ± SEM of 20 fields of view per condition. The individual datapoints are per frame cell averages.
Note: * p < 0.05, ** p < 0.01, *** p < 0.001 and **** p < 0.0001. Scale bar: 10 μm. 
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Figure 3. Red-only dots colocalize with mitochondrial markers of different mitochondrial compartments and lack membrane potential. (A) Confocal microscopy 
images of fixed tandem- tagged (mCherry-EGFP-SYNJ2BP-TM) H9c2 cells demonstrating colocalization of red-only dots with mitochondrial marker proteins of the 
different mitochondrial compartments; FIS1 and TOMM20 (outer membrane), ATP5F1 A (inner membrane) and PDHA1 (matrix). Region of interest for each marker is 
presented in a zoomed-in image with a line profile including an enlarged red-only dot displaying the colocalization. (B) Confocal microscopy images of live H9c2 cells 
with the mCherry-EGFP-SYNJ2BP-TM reporter and MitoTracker Deep Red staining for both glucose and galactose adapted cells. The enlarged region of interest 
depicts line profiles demonstrating colocalization of MitoTracker Deep Red in mitochondrial networks, but lack of colocalization in red-only dots. Scale bar: 10 μm.
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Figure 4. Functional lysosomes are essential for the appearance and removal of red-only dots during galactose adaption. (A) Structured illumination microscopy (SIM) 
imaging of fixed mCherry-EGFP-SYNJ2BP-TM H9c2 cells showing red-only dots that are positive for LysoTracker DeepRed staining (magenta). Line profiles through 
the LysoTracker-positive red-only dots in the enlarged boxed regions of interest are depicted, with corresponding numbers between the overview image and 
enlarged images. (B) Representative images of galactose adapted mCherry-EGFP-SYNJ2BP-TM H9c2 cells during control conditions and after treatment with the 
lysosomal inhibitors bafilomycin A1 (BafA1; 200 nM) and pepstatin a (PepA;10 μg/ml) and E64d (10 μg/ml) for the indicated times. (C) Quantification of the effects of 
a 6 h treatment of BafA1 on galactose adapted cells with the mCherry-EGFP-SYNJ2BP-TM reporter by assessing the percentage of cells containing red-only dots and 
number of red-only dots per total cells. (D) Quantification of the effects of a time course treatment of PepA and E64d assessed by number of red-only dots per cell in 
cells with red-only dots in galactose adapted cells with the mCherry-EGFP-SYNJ2BP-TM reporter. Over 150 cells were analyzed for each condition. The data is 
presented as mean ± SEM from 3 independent experiments, with more than 100 cells per condition. The individual datapoints are per frame cell averages. NOTE: * p  
< 0.05, ** p < 0.01, *** p < 0.001 and **** p < 0.0001. Scale bars: 10 μm and 1 μm (Ai and Aii).
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Figure 5. Three-dimensional (3D) structured illumination microscopy (SIM) live cell imaging of mCherry-EGFP-SYNJ2BP-TM H9c2 cells captures mitochondrial 
fragments within acidic structures. (Ai) A still frame overview image (merged channels) from the start of Video S1 displaying a cell during normal culture conditions 
after adding the LysoTracker Deep Red dye (100 nM for 40 min). The boxed area indicates a mitochondrial fragment with both EGFP and mCherry fluorescence inside 
a LysoTracker Deep Red-positive structure. The channels for red and green fluorescence are slightly shifted due to the time-delay between images of the different 
channels. The region of interest is shown as an enlarged image and the structure is highlighted with an arrowhead. (Aii) A time series of the boxed area in Video S1 
following the movement of the lysosome containing the mitochondrial fragment (arrowhead). (B) A still frame overview image (merged channels) from the start of 
Video S2 displaying a cell after galactose adaptation after adding the LysoTracker Deep Red dye (100 nM for 40 min). The boxed area indicates a mitochondrial 
fragment with both EGFP and mCherry fluorescence inside a LysoTracker Deep Red-positive structure. The region of interest is shown as an enlarged image with the 
identified structure highlighted with an arrowhead. Max projection was utilized for all the images. Scale bars: 2 μm (overview images) and 1 μm (the enlarged images 
and for the time series).
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Figure 6. Airyscan FAST imaging of live galactose adapted mCherry-EGFP-SYNJ2B-TM H9c2 cells stained with LysoView 650 reveals transient contact and transfer 
between the mitochondrial network and red-only dots. (A) Full frame of video S3 at time 0:35 with zoomed-in area indicated (white box) for the selected time points 
(small panels, right). White arrows in the full frame show examples of red-only dots in close proximity with tubular mitochondria. White arrowheads in the small 
panels highlight a red-only dot approaching and contacting the mitochondrial network, producing a brief colocalized signal (yellow arrowheads) around time 2:34. At 
time 2:55, EGFP fluorescence has diminished, and the structure again appears red-only (white arrowheads). In subsequent frames, small protrusions of EGFP 
fluorescence (notched yellow arrowheads at time points 4:00 and 4:08) can be seen upon close inspection to extend from the mitochondrion and into the red-only 
dot, and then rapidly disappear (see also video S3). (B) Full frame of video S4 at time 1:47 with zoomed-in area indicated (white box) as in (A). White arrowheads 
indicate a red-only dot approaching the mitochondrial network from time point 2:07. The EGFP signal remains detectable within the red-only dot for a few seconds 
around time 2:19 (yellow arrowheads) and then disappears around time point 2:22 (see also video S4). (C) Full frame of video S5 at time 0:06 with zoomed-in area 
indicated (white box) as in (A) and (B). White arrowheads indicate a red-only dot which encounters a tubular mitochondrion from time point 0:24 (yellow 
arrowheads). In subsequent frames, small protrusions of EGFP fluorescence can be seen to extend into the red-only dots (notched yellow arrowheads at time 1:36, 
1:55, 2:03, and 2:12). An enlarged partial view (white boxes) of the mCherry and EGFP channels is shown below each time point. Scale bars: 10 μm (full frames), 2 μm 
(small panels), and 1 μm (enlarged views).
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adaptation and demonstrate the importance of imaging serial 
sections when characterizing ultrastructural features.

Knockdown of Ulk1, Atg7 or Rab9a, respectively, impacts 
on OXPHOS induced lysosomal degradation of 
mitochondria.

In an attempt to elucidate the mechanism(s) driving lysoso
mal degradation of mitochondria induced by galactose adap
tation in H9c2 cells, we performed short interfering RNA 
(siRNA) knockdown of selected key genes involved in auto
phagic or endosomal degradation of mitochondria in cardiac 
cells: Atg7 (canonical autophagy machinery) [48], Rab9a 
(alternative mitophagy) [28], Ulk1 (upstream of both ATG7 
and RAB9A) [15,28] as well as Rab5a (endosomal mitophagy) 
[27]. We also knocked down Rab7a, the small GTPase 
involved in direct contact between mitochondria and lyso
somes [28]. We chose a knockdown strategy with siRNA due 
to difficulties in generating CRISPR-Cas9 knockouts in H9c2 
cells as also previously reported [49]. The cells were subjected 
to 48 h of siRNA knockdown and grown with or without the 
lysosomal cathepsin inhibitors PepA and E64d during the 
final 12 h. After fixation, the cells were analyzed by fluores
cence microscopy (Figure 8A). The use of PepA and E64d 
enabled us to assess perturbation of autophagic flux resulting 
from siRNA knockdown by quantifying red-only dots 
(Figure 8B). The knockdown of each protein was verified 
with western blots of cell lysates from cells adapted to galac
tose (Figure 8C). The abundance of red-only dots was quan
tified and compared with cells treated with PepA and E64d. 
Surprisingly, siRNA knockdown of neither Ulk1, Atg7, Rab9a, 
Rab5a nor Rab7a affected the number of red-only dots per 
cell during steady-state conditions. However, knockdown of 
Ulk1, Atg7 and Rab9a led to an impaired flux, demonstrated 
by a lack of an increase in red-only dots after PepA and E64d 
treatment (Figure 8B). This did not apply to siRNA knock
down of Rab5a or Rab7a where the flux was unaffected. Our 
data thus show the importance of using lysosomal inhibitors 
when evaluating the effects of siRNA knockdowns on 
OXPHOS induced degradation of mitochondria. Prolonging 
the PepA and E64d treatment from 12 to 24 h did not uncover 
any further increase in the level of red-only dots (Figure S5A). 
Likewise, extending the siRNA knock-down to 72 h did not 
alter mitochondrial protein expression levels (Figure S5B). To 
further investigate the importance of the canonical autophagy 
machinery we monitored the presence of the autophagy mar
ker MAP1LC3B on mitochondria and on red-only dots. To 
this end, we performed a proximity ligation assay (PLA) [50] 
using anti-MAP1LC3B antibody in combination with anti- 
PDHA1 antibody. This assay enables the assessment of proxi
mity of the two targeted proteins in situ in fixed cells, giving 
rise to a fluorescent PLA signal or puncta only when the 
targeted proteins are within 40 nm of each other. The PLA 
puncta were localized on mitochondria, both networks and 
smaller structures, but were not present on red-only dots 
(Figure 8D). Notably, there was no increase in the number 
of PLA puncta per cell in galactose adapted cells compared to 

cells in normal glucose containing conditions (Figure 8E). 
This suggests the presence of MAP1LC3B on mitochondria 
before acidification but also indicates that MAP1LC3B is not 
the main mediator of enhanced mitochondrial degradation in 
galactose adapted cells. In conclusion, our data indicate the 
involvement of both ULK1, ATG7 and RAB9A in lysosomal 
degradation of mitochondria in H9c2 cells. In contrast, 
RAB5A and RAB7A do not seem to play a major role.

Discussion

Given the central role of mitochondria in cell homeostasis, 
maintaining functional mitochondria is crucial. Basal levels of 
mitophagy have been considered too low for a reliable assess
ment [47]. Interestingly, use of pH-sensitive mitochondria 
reporters such as mt-Keima and mito-QC reveal 
a substantial but heterogenous level of basal mitophagy in 
tissues of mice and flies [51–56] and a detectable level in 
C. elegans and zebrafish [57]. Since the fraction of mitochon
dria targeted for lysosomal degradation at any given time 
under normal conditions is likely small compared to the 
total pool of mitochondria within the cell, such sensitive 
reporters are crucial to detect the degradation. The mito-QC 
reporter has been used in H9c2 cardiomyoblasts to display 
induced mitophagy during cell differentiation [49]. We 
exploited a similar dual color fluorescence-quenching assay 
based on a mCherry-EGFP outer mitochondrial membrane 
targeted reporter to detect lysosomal degradation of mito
chondria in H9c2 cells. Our quantification of basal mitophagy 
in H9c2 cells showed a high percentage (around 50%) of cells 
containing red-only mitochondria. This is substantially higher 
than reported for e.g., human neuroblastoma SH-SY5Y cells 
[58] and mouse embryonic fibroblasts [59,60] where less than 
20% of the cells display red-only mitochondria. Notably, the 
number of acidic mitochondrial structures detected per cell 
(around 3–4) of H9c2 cells with red-only dots was similar as 
to that reported for SH-SY5Y cells and human retinal pigment 
epithelial ARPE-19 cells [61]. By employing a metabolic shift 
to OXPHOS by galactose adaptation we detected a significant 
increase in both the number of cells containing acidic mito
chondria as well as the number of red-only dots per cell. Our 
results are in line with studies on OXPHOS-induced mito
phagy in mouse endothelial fibroblasts (MEFs) [59] as well as 
in HeLa cells and human primary skeletal muscle myoblasts 
[62]. In addition, piecemeal mitophagy of specific mitochon
drial proteins is OXPHOS induced in HeLa cells [63] and in 
MEFs [60]. Most likely the induced removal of mitochondria 
or mitochondrial proteins is due to higher turnover of the 
mitochondria during elevated activity of the electron trans
port chain. This would sustain renewal of mitochondria and 
avoid accumulation of damaged organelles. In support of this, 
we have previously shown an increased formation of mito
chondria derived vesicles in galactose adapted H9c2 cells [35]. 
Conversely, OXPHOS dependance blocks iron chelator- 
induced mitophagy in human bone osteosarcoma U2OS 
cells and SH-SY5Y cells [58] and Carbonyl cyanide 3-chlor
ophenylhdyrazone (CCCP) depolarization-induced mito
phagy in neurons and HeLa cells [64–67]. Hence, the
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Figure 7. Correlative light and electron microscopy of mCherry-EGFP- SYNJ2BP-TM H9c2 cells reveals the ultrastructure of red-only dots. (A) Red-only dots in cells 
grown in media containing glucose correspond to autophagic vacuoles with a diverse internal milieu at varying stages of cargo engulfment and maturation (A iv-v). 
Meanwhile, mitochondria displaying both EGFP and mCherry fluorescence have a normal tubular morphology with distinct inner and outer membranes and intact 
cristae (A vi). (B) Structures corresponding to red-only dots in galactose adapted cells are more uniform and less electron dense. Imaging of consecutive ultrathin 
sections (B iv-vi) revealed that these structures are in close proximity (or may be continuous) with membranes of the endoplasmic reticulum (ER) and mitochondria 
(M). Also note apparent lysosomes (L) at the periphery of red-only structures (*). Scale bars: 10 μm (A i and B i), 2 μm (A ii and B ii), 1 μm (B iv and B v) and 0.5 μm (A 
iv-vi and B vi). (C) Serial section TEM imaging of a red-only dot shows a single membrane vesicle with apparent remnants of mitochondria and a multilamellar 
lysosome. Scale bar: 0.3 μm.
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Figure 8. Effect of siRNA knockdowns on mitophagic flux and evaluation of LC3 involvement by proximity ligation assay (PLA). (A) Representative widefield images of 
mCherry-EGFP- SYNJ2BP-TM H9c2 cells analyzed 48 h after transfection with scrambled siRNA (siScr) or siRNA against Ulk1, Atg7, Rab9a, Rab7a or Rab5a respectively. 
(B) Quantification of the effect of 48 h siRNA knockdowns by assessment of number of red-only dots per cell in cells containing red-only dots in control conditions 
against a 12 h PepA and E64d treatment. The data is presented as mean ± SEM from 3 independent experiments, with more than 100 cells per condition (total 
number analyzed per experiment was over 1200 cells). (C) Western blots showing the expression levels of the siRNA targeted proteins in control and siRNA treated 
cells for verification of successful knockdown. (D) Representative confocal images of detected PLA puncta (white) using anti-MAP1LC3B and anti-PDHA1 antibody 
during normal (GLU) and galactose (GAL) adapted conditions. The enlarged boxes display the PLA puncta on the mitochondria network and small mitochondrial 
fragments but their absence on red-only dots. (E) Quantification of the number of PLA puncta per cell in 10 images (with more than 50 cells in total) per condition 
from two independent experiments. The individual datapoints are per frame cell averages. * p < 0.05, ** p < 0.01, *** p < 0.001 and **** p < 0.0001. Scale bar: 10 μm.
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metabolic status of the mitochondria can dictate the level of 
mitophagy, dependent on the cell type and growth conditions. 
Interestingly, a recent study suggests that mitophagy itself 
initiates an increase in mitochondrial biogenesis and oxidative 
metabolism in induced pluripotent stem cells undergoing 
endothelial differentiation [68].

Using a deep-learning approach we were able to quantify 
the morphological change of mitochondria in H9c2 cells, 
adopting a more fragmented or shorter appearance after the 
metabolic shift. Mitochondrial fragmentation has also been 
observed in neonatal cardiomyocytes where the percentage of 
mitochondria with shorter lengths increases during glucose 
deprivation by galactose adaptation [28]. Mitochondrial frag
mentation is often mediated by peripheral fission which is 
mechanistically different from mid-zone fission directing 
mitochondria biogenesis [42]. In green monkey kidney fibro
blast-like Cos-7 cells the smaller peripheral fission-derived 
mitochondria display a length distribution of only 1–2 μm 
and are mainly subjected to degradation. In addition, the 
rate of peripheral fissions per cell increases when the Cos-7 
cells are grown in glucose-free, galactose containing 
media [42].

Performing super-resolution live cell imaging on tandem 
tagged SYNJ2BP-TM H9c2 cells with labeled lysosomes, we 
were able to monitor highly dynamic interactions between 
lysosomes and mitochondria. Furthermore, we detected 
rapid lysosomal engulfment of mitochondrial contents within 
a few minutes. The rapid formation of these structures could 
also indicate their rapid degradation and thus influence the 
numbers of such events detected in snapshots of fixed cells. 
The potential consequence could therefore be an underesti
mation of the levels of lysosomal degradation of mitochondria 
when studying fixed cells and tissue. We are not aware of 
previous publications demonstrating super-resolution live cell 
imaging of the formation of acidic mitochondria.

Applying CLEM, we revealed the ultrastructure of red-only 
mitochondria in the H9c2 cells in steady-state conditions and 
after a metabolic shift toward OXPHOS. There are only a few 
studies that have performed CLEM analysis on acidified mito
chondria. The ultrastructures of mt-Keima acidic dots ana
lyzed by CLEM in Drosophila muscle cells also contain 
features of multilamellar bodies and are of a comparable size 
as those detected in the H9c2 cells [55]. In studies performed 
in mammalian cells, iron depletion with DFP [57,67] or stress 
induced with propionic acid [69] or CCCP and overexpres
sion of PRKN [70] are used to induce degradation of mito
chondria before the CLEM analysis. Thus, to our knowledge, 
our study is the first to visualize the ultrastructure of acidified 
mitochondria in mammalian cells cultured under physiologi
cally relevant conditions. Taken together, in view of our 
results from live cell SIM and Airyscan FAST imaging, the 
CLEM data presented are consistent with a model where 
mitochondria are fragmented at (or in close vicinity to) the 
ER, and rapidly fuse with lysosomes.

There are still many unanswered questions regarding the 
molecular mechanisms of basal mitophagy. Notably, pH- 
dependent mitochondrial reporters indicate acidification of 
tagged mitochondria or parts of mitochondria and thus their 
presence in acidic late endosomes or lysosomes. However, the 

route of the labeled mitochondria toward lysosomes is not 
revealed by the reporters. We chose siRNA knockdown of 
Ulk1, Atg7, Rab9a to assess the contribution of both canonical 
and non-canonical autophagy in lysosomal degradation of 
mitochondria in the H9c2 cells. Knockdown of neither Ulk1, 
Atg7 nor Rab9a reduced the level of red-only dots in galactose 
adapted cells. However, these siRNA experiments resulted in 
hampered mitophagic flux, revealed using lysosomal inhibi
tors. Therefore, our data indicate the presence of redundant 
mechanisms for lysosomal degradation of mitochondria in 
H9c2 cells where both the canonical autophagy machinery 
and alternative RAB9A mediated mitophagy operate during 
OXPHOS reliant conditions. In addition, because of the unaf
fected basal level during all knockdown experiments, other 
mechanisms such as different types of micromitophagy [26] 
could be involved and require further investigations.

Our study shows that assessment and visualization of lyso
somal degradation of mitochondria at high temporal and 
spatial resolution is feasible during basal conditions. Our 
results indicate highly dynamic interactions and transfer of 
material between mitochondria and lysosomes and give 
important insights that are valuable for future studies and 
therapeutic targeting of mitophagy.

Materials and methods

Cell culture

Rat cardiomyoblast H9c2 cells (Sigma-Aldrich, 88092904) 
were cultured in high-glucose (4.5 g/L) Dulbecco’s Modified 
Eagle Medium (DMEM; Sigma-Aldrich, D5796) with 10% 
Fetal Bovine Serum (FBS) and 1% streptomycin/penicillin 
(Sigma-Aldrich, P4333). For glucose deprivation and adapta
tion to galactose, the cells were grown in DMEM without 
glucose (Gibco, 11966–025) supplemented with 2 mM 
L-glutamine (Sigma-Aldrich, G7513) 1 mM sodium pyruvate 
(Sigma-Aldrich, S8636), 10 mM galactose (Sigma-Aldrich, 
G5388), 10% fetal bovine serum (Sigma-Aldrich, F7524) and 
1% streptomycin-penicillin (Sigma-Aldrich, P4333). The cells 
were adapted to galactose for at least 7 days before the experi
ments. Stable H9c2 cells (see below) were grown in the same 
medium with the addition of 1 μg/ml of puromycin 
(InvivoGen, ant-pr-1). For hypoxic conditions, the cells were 
incubated at 0.3% O2 for 2, 4, 6 or 16 h. For labeling of 
lysosomes, the cells were treated with 50 or 100 nM 
LysoTracker Deep Red (ThermoFisher Scientific, L12492) for 
30–40 min or with LysoView 650 (Biotium, 70059). Cells were 
treated as indicated with 0.2 μM bafilomycin A1 (BafA1 from 
Streptomyces griseus; Sigma-Aldrich, B1793) or 10 μg/ml pep
statin A (Sigma-Aldrich, P5318) and 10 μg/ml E64d (Sigma- 
Aldrich, E8640). All cell lines were maintained at 37°C and 
under 5% CO2.

Generation of stable mCherry-EGFP-SYNJ2BP-TM and 
TOMM20-mCherry-EGFP H9c2 cell lines

H9c2 cells with stable expression of tandem tagged (mCherry-
EGFP) mitochondria
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outer membrane protein SYNJ2BP/OMP25 (synaptojanin 
2 binding protein)-transmembrane domain (TM) or tandem- 
tagged (C terminus) full length TOMM20 protein were gen
erated by retroviral transduction. The mCherry-EGFP- 
SYNJ2BP-TM construct [32] was amplified with PCR and 
cloned into the retroviral expression vector pMRXIP with 
the selection marker puromycin. The vector was made with 
deletion of GFP-STX17 from the pMRXIP-GFP-STX17 plas
mid (Addgene, 45909; Noburo Mizushima lab). Full-length 
TOMM20 was amplified by PCR using mTagBFP2-TOMM20 
-N-10 plasmid (Addgene, 55328; Michael Davidson lab) as 
a template and cloned into the pMRXIP vector with the 
tandem tag. The plasmids were verified by restriction enzyme 
digestion and DNA sequencing (Applied Biosystems, 
4337455BigDye). The HEK293-Phoenix packaging cell line 
(ATCC, CRL-3213) was transfected with the pMRXIP- 
reporter vectors using MetafectenePro (Biontex, T040–1.0). 
The virus-containing media from transfected HEK293- 
Phoenix cells was harvested 24, 48 and 72 h post transfection. 
The harvested media was subsequently filtered through 
a 0.45-μm filter and then added onto subconfluent H9c2 
cells. Hexadimetrinebromide-polybrene (Sigma-Aldrich, 
H9268) was added to a final concentration of 8 μg/ml. The 
H9c2 cells were incubated with the virus-containing media 
with polybrene for 6–12 h each time. The transduced H9c2 
cells were then selected with 1 μg/ml of puromycin. Stable 
expression of mCherry-EGFP-SYNJ2BP-TM or TOMM20- 
mCherry-EGFP was verified by western blotting and confocal 
imaging. Furthermore, the cells were sorted by fluorescence 
activated cell sorting (FACS) to ensure approximately equal 
expression level of the mitochondrial outer membrane 
reporter.

High-resolution respirometry

At the day of measurements, the mCherry-EGFP- SYNJ2BP 
-TM H9c2 cells, grown in glucose or adapted to galactose 
for 7 to 21 days, were trypsinized, and resuspended in their 
conditioned medium and counted using Countess II 
(ThermoFisher Scientific). Respirometry was performed in 
an Oxygraph-2k system (Oroboros Instruments, Innsbruck, 
Austria) calibrated to air (gain for oxygen sensor was set 
to 2) with standard cell culture medium at 37°C. The 
measurements were repeated in 4 independent experiments. 
Based on the cell number, a calculated volume of cells was 
added to the two stirred (750 rpm) chambers aiming to 
a final concentration of 0.4 × 106 cells/ml. The cell counting 
was repeated to determine the exact cell concentration in 
each camber, and chambers were sealed to obtain a closed 
system. Analysis of the oxygen concentration in the cham
bers was performed using DatLab version 5.1.0.20 
(Oroboros Instruments, Innsbruck, Austria). Decreasing 
oxygen concentration in the chambers resembled cellular 
oxygen consumption. When the oxygen consumption rate, 
OCR (O2 flux (pmolO2/s*ml)) reached a steady state level, 
a measurement was recorded displaying total cellular 
respiration (basal). Leak respiration was assessed by the 
addition of oligomycin (Sigma-Aldrich, O4876) in a final 
concentration of 5 µM. Subsequently, the proton gradient 

was released by stepwise titration (0.5 μM/step) of the 
uncoupler carbonylcyanide-3-chlorophenylhydra-zone 
(CCCP) (Sigma-Aldrich, C2759) until the maximum 
respiration was achieved (electron transport system capa
city, ETS capacity). The addition of 0.5 μM rotenone 
(Sigma-Aldrich, R8875) an inhibitor of CI and 2.5 μM 
antimycin A (Sigma-Aldrich, A8674) an inhibitor of CIII 
blocked mitochondrial respiration completely, resulting in 
residual oxygen consumption (ROX). The respiration mea
surement at the different STATES (basal, leak, ETS) were 
corrected for ROX afterward. Mitochondrial respiration 
was calculated by subtracting the non-mitochondrial 
respiration after antimycin A addition from the basal 
respiration level. ATP linked respiration was derived from 
subtracting the leak respiration (oligomycin) from the basal 
level. All respiration data was normalized to the cell count 
in the camber. The results were presented as a mean.

Mitochondrial ROS measurements with MitoSox Red

H9c2 cells grown under normal culture conditions or 
adapted to galactose were treated with 100 nM antimycin 
A for 4 h or left untreated. After treatment, cells were har
vested by trypsinization, washed three times with respective 
media and then incubated with 1 μM MitoSOX Red 
(ThermoFisher Scientific, M36008) for 30 min inside the 
cell incubator in their respective media. The cells were then 
washed 3 times with HBSS (Gibco, 1402–092) followed by 
flow cytometry analysis with a LSRFortessa (BD Biosciences). 
The excitation light used was 488 nm, emission was passed 
through 556LP filter and detected using a 616/23 nm emis
sion filter. For confocal imaging purposes the cells were 
seeded in MatTek dishes (MatTek, P35-1.5-14-C) treated 
with antimycin A and stained with MitoSOX Red as 
described above, followed by HBSS washing prior to live 
cell confocal imaging. MitoSOX Red fluorescence was excited 
using the 514 nm laser and the emitted light was detected 
between 565–715 nm.

Mitochondrial membrane potential visualization

The mCherry-EGFP-SYNJ2B-TM H9c2 cells grown under 
normal conditions or adapted to galactose were incubated 
with MitoTracker Deep Red (ThermoFisher Scientific, 
M22426) at 100 nM concentration for 30 min. The cells were 
then given fresh cell culture media and subjected to live 
Airyscan FAST imaging using the Zeiss LSM 880.

Antibodies

The following primary antibodies were used: anti-GAPDH 
(Sigma-Aldrich, G9545; 1:5000) anti-TOMM20 (Santa Cruz 
Biotechnology, SC-11415; 1:500), anti-FIS1 (Proteintech, 10956– 
1-1ap; 1:100), anti-ATP5F1A/ATP5A (Abcam, Ab14748; 1:200), 
anti-PDHA1 (Abcam, ab110330; 1:200), anti-ATG7 (Cell 
Signaling Technology, 8558; 1:1000), anti-RAB9A (Cell 
Signaling Technology, 5118; 1:1000), anti-ULK1 (Cell Signaling 
Technology, 8054; 1:1000), anti-RAB5A (Cell Signaling 
Technology, C8B1; 1:1000), anti-RAB7 (ERP7589; Abcam,
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ab137029; 1:1000), anti-LC3B (Sigma-Aldrich, L7543;1:200). 
Alexa Fluor 647-conjugated goat anti-rabbit and anti-mouse IgG 
(Invitrogen, A21244 and A32728; 1:500) were used as secondary 
antibodies.

Immunostaining of fixed cells

For immunofluorescent staining the cells were seeded on #1.5 
glass coverslips. At

approximately 80% confluence the cells were subjected to 
treatment. The cells were then fixed using 4% formaldehyde 
(ThermoFisher Scientific, J19943.K2) at 37°C for 20 min. The 
cells were permeabilized with methanol at room temperature for 
5 min. The permeabilized cells were blocked with 3% pre- 
immune goat serum (Sigma-Aldrich, G6767) in phosphate- 
buffered saline (PBS; Sigma-Aldrich, D8537) for 1 h at room 
temperature before overnight incubation at 4°C with primary 
antibodies diluted in PBS with 1% goat serum. Cells were then 
washed and incubated for 1 h with Alexa Fluor-coupled second
ary antibodies diluted 1:500 in PBS supplemented with 1% goat 
serum. After a final wash in PBS the coverslips were mounted on 
glass slides using Prolong Glass (Invitrogen, P36980).

RNAi

The short interfering RNAs (siRNAs) used were pre-designed 
and validated Silencer®Select siRNAs (Invitrogen, 4390771): 
siRNA against Ulk1 (siRNA ID s166350), siRNA against 
Atg7 (siRNA ID s161900), siRNA against Rab9a (siRNA ID 
s136762), siRNA against Rab5a (siRNA ID s134381), siRNA 
against Rab7a (siRNA ID s131440) and negative control 
siRNA (Ambion, 4390844). The cells were transfected with 
siRNA using Lipofectamine RNAiMax Transfection Reagent 
(Invitrogen, 13778–075) according to the manufacturer´s 
recommendation. After 6 h of incubation the cell media was 
changed to remove the transfection reagent in order to avoid 
H9c2 cell death. After 48 or 72 h (two consecutive siRNA 
transfections) of siRNA knockdown the cells were fixed or 
harvested for western blot analysis. The cells were fixed with 
4% formaldehyde with 0.2% glutaraldehyde (Sigma-Aldrich, 
G5882). For each coverslip of fixed cells/condition, 10 posi
tions (containing more than 100 cells in total) were selected 
and imaged as a Z-stack on a Cell Discoverer7 widefield 
microscope (Carl Zeiss Microscopy). Quantification of red- 
only dots was performed using the IMARIS imaging analysis 
software (see below).

NaveniFlex Proximity Ligation Assay (PLA)

The PLA assay was performed according to Navinci’s recom
mendations using NaveniFlex MR In Situ Detection kit 
(Navinci, NF.100.2) and all incubations were performed in 
a humidity chamber. Briefly, cells were seeded on coverslips 
and grown until around 80% confluency. The cells were fixed 
using 4% PFA at 37°C for 20 min and permeabilized with 
100% methanol at room temperature for 5 min. The coverslips 
were then washed two times in PBS, blocked with Blocking 
solution (Navinci, NF.1.100.01) for 30 min at 37°C and then 
incubated with two primary antibodies (derived from mouse 

and rabbit, respectively) diluted in primary antibody diluent 
(Navinci, NF.1.100.02) overnight at 4°C. As a negative control 
one coverslip was incubated in Antibody diluent with only 
one primary antibody. The coverslips were washed and then 
incubated with the PLA probes corresponding to the primary 
antibodies using Navenibody M1 (Navinci, NF.1.100.004,) 
and Navenibody R2 (Navinci, NF.1.100.05) in Navenibody 
Diluent (Navinci, NF.1.100.03) for 1 h at 37°C. Then, the 
coverslips were washed and subsequently incubated for 
DNA ligation with enzyme A (Navinci, NF.2.100.09) in buffer 
A (Navinci, NF.2.100.08) and enzyme B (Navinci, 
NF.2.100.11) in buffer B (Navinci, NF.2.100.10) for 1 hour 
and 30 min, respectively at 37°C. The coverslips were washed 
and finally incubated with enzyme C (Navinci, NF.2.100.15), 
a DNA polymerase, diluted in amplification buffer C Atto 
647N (Navinci, NF.2.100.14) for 90 min at 37°C protected 
from light. Finally, the coverslips were stained with DAPI, 
washed, and then mounted on glass slides using Prolong Glass 
antifade mountant media. The fluorescent PLA signal and 
DAPI was detected using LSM800 confocal microscope (Carl 
Zeiss Microscopy) equipped with a 40X NA1.2 water immer
sion objective. Images were acquired as 3-slice Z-stacks. 
A minimum of 10 positions per coverslip of fixed cells (con
taining over 50 cells in total) were imaged per condition in 
two independent experiments. Quantification of PLA puncta 
was performed on the images using the IMARIS image ana
lysis software.

Western blot analysis of total H9c2 cell lysates

Cells were lysed by scraping in 2X sodium dodecyl sulfate 
(SDS) buffer (100 mM Tris-HCl, pH 6.8, 20% glycerol, 4% 
SDS) with 1× Complete Mini EDTA-Free Protease Inhibitor 
Cocktail (Roche, 11697498001) and boiling for 5 min. Total 
protein content of cell extracts was determined using 
a Bicinchoninic Acid (BCA) Kit (ThermoFisher Scientific, 
23227). Total protein lysates (15 μg) were run on Mini- 
Protean TGX 4–20% gradient gels (Bio-Rad, 456–1093) and 
transferred onto InvitrolonTM PVDF membranes 
(Invitrogen, LC2005). Transfer was visualized with Ponceau 
staining and the membrane was blocked with 5% nonfat dry 
milk in TBST (20 mM Tris pH 7.5, 150 mM NaCl, 0.1% 
Tween 20 [P1379, Sigma-Aldrich]). The membrane was incu
bated with primary antibody overnight at 4°C followed by 1 h 
incubation at room temperature with horseradish peroxidase 
(HRP)-conjugated secondary antibody; BD Pharmingen HRP 
Goat Anti-Mouse Ig (BD Biosciences, 554002) or HRP- 
conjugated Affinipure Goat Anti-Rabbit IgG (H+L) 
(Proteintech, SA00001–2). Signal detection was performed 
with a western blotting chemiluminescent reagent (Sigma- 
Aldrich, CPS3500) and an iBright Imaging System 
(ThermoFisher Scientific).

Widefield and confocal imaging of fixed cells

For imaging, Celldiscoverer7, LSM800 and LSM880 (all sys
tems Carl Zeiss Microscopy) were used. For all images taken 
with the Celldiscoverer7 a Plan-Apochromat 50× objective 
with an NA of 1.2 was used. The images were acquired as
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z-stacks. The LSM800 was used with a Plan-Apochromat 63× 
oil (M27) objective with an NA of 1.4 for verification of 
colocalization of red-only dots and mitochondrial proteins. 
The Plan-Apochromat 40× water objective with an NA of 1.2 
was used for imaging PLA puncta, which were acquired as 
z-stacks. For the LSM880 the images were acquired either 
with a Plan-Apochromat 63× oil objective with an NA of 1.4 
or a C-Apochromat 40× water objective with an NA of 1.2. 
The LSM880 was used for bright field and fluorescence ima
ging in CLEM experiments to image cells of interest and to 
map the relevant grid coordinate for correlation with TEM 
images.

Three-dimensional (3D) structured illumination 
microscopy (SIM) imaging of fixed and live cells cells.

The mCherry-EGFP-SYNJAB-TM H9c2 cells were seeded 
on MatTek dishes (MatTek Corporation, P35G-1.5-14-C) 
and imaged when they reached approximately 80% con
fluency. For labeling of lysosomes, the cells were treated 
with 100 nM LysoTracker Deep Red (ThermoFisher 
Scientific, L12492) for 40 min. After labeling, the cells 
were fixed with 4% formaldehyde and 0.2% glutaraldehyde 
or the media was replaced with fresh cell-culture media 
right before live imaging. The fixed cells were washed in 
PBS and imaged in PBS. For live cell imaging the cells were 
imaged in their growth medium at 37°C with atmospheric 
gas levels. The images were acquired using a DeltaVision 
OMX V4 Blaze imaging system (GE Healthcare) equipped 
with a 60X 1.42NA oil-immersion objective (Olympus), 
three sCMOS cameras, and 405, 488, 568, and 642 nm 
lasers for excitation. The vendor-specified optical resolution 
of the 3DSIM system is 110–160 nm laterally, and 340–380  
nm axially, depending on the color channel. Super- 
resolution 3D images were obtained by 3DSIM reconstruc
tions using the manufacturer-supplied softWoRx program 
(GE Healthcare). The SIM figure panels and AVI movies 
(maximum intensity z-projected and bleach corrected image 
sequenced using the exponential fit option) were assembled 
using Fiji [71].

Airyscan FAST imaging of live cells after lysosome 
labeling with LysoView 650

Live mCherry-EGFP-SYNJ2B-TM H9c2 cells grown in 
MatTek dishes were stained with LysoView 650 (Biotium, 
70059) for 30 min and imaged using the Airyscan FAST 
mode of the LSM880, utilizing line-wise switching between 
tracks to avoid time delay between channels. Cells were 
maintained in a humidified stage-top incubator at 37°C 
and 5% CO2 during imaging. Timelapse series (500 frames 
in total) were recorded using a 40× NA1.2 water immer
sion objective lens and a zoom factor of 4.0, with opti
mized scan settings for subsequent Airyscan processing 
(50 nm pixel size). The pixel dwell time was 0.73 μs, result
ing in an individual frame time of 1.01 s. Laser excitation 
at 488 nm, 561 nm and 633 nm was used for EGFP, 
mCherry, and LysoView 650, respectively. The resulting 

raw files were processed using automatic settings (strength 
6.0) in ZEN ver. 2.3 (Carl Zeiss Microscopy).

Correlative-light and electron microscopy (CLEM)

Cells were grown on gridded #1.5 glass coverslips in 35-mm 
dishes (P35G-1.5-14-CGRD, MatTek). The cells were incu
bated with 50 nM LysoTracker Deep Red for 30 min before 
fixation with 4% formaldehyde and 0.5% glutaraldehyde in 
PHEM buffer, pH 6.9 (60 mM PIPES, 25 mM HEPES, 10 mM 
EGTA, 2 mM MgCl2). The cells were stained with DAPI and 
washed twice with PBS. After confocal imaging, the cells were 
processed for TEM using 0.05% malachite green (Sigma- 
Aldrich, 101398), 1% osmium tetroxide (Electron 
Microscopy Sciences, 19110)/0.8% K3Fe(CN)6 (Sigma- 
Aldrich, 702587), 1% tannic acid (Electron Microscopy 
Sciences, 21700), and 1% uranyl acetate (Electron 
Microscopy Sciences, 22400), followed by stepwise ethanol 
dehydration and embedding in epoxy resin (Agar, R1043). 
All processing steps were carried out using a microwave pro
cessor (Pelco BioWave, Ted Pella, Inc.). Finally, the resin was 
polymerized at 60º C for 48 h. After polymerization, the 
relevant dish coordinates were relocated and trimmed using 
a glass knife on an UC6 ultramicrotome (Leica 
Microsystems). Ultrathin sections (70 nm) were cut using 
a 35º ultra-knife (Diatome) and collected on slot grids. 
Sections were imaged using a HT7800 transmission electron 
microscope (Hitachi High-Tech) at 100 kV using a Xarosa 
CMOS camera and Radius ver. 2.0 (EMSIS). Preliminary 
image correlation of confocal images and TEM images was 
performed at the microscope using MirrorCLEM ver. 2.0.3 
(Astron, Inc.). Final correlation was performed using the ec- 
CLEM plugin [72] in Icy ver. 2.4.2.0 [73] using DAPI, 
LysoTracker Deep Red, and tubular EGFP/mCherry-positive 
mitochondria as registration landmarks.

Image analysis.

Fluorescence images were analyzed using Imaris ver. 9.6.1 
(Bitplane). Images were converted from the .zen file format 
used by ZEISS microscopes into the .ims file format used by 
Imaris by the Imaris file converter. No preprocessing was per
formed. For the quantification of red-only mitochondria the 
Imaris XTension Channel Arithmetics was used in conjunction 
with an adapted Batch Processing XTension to create a new third 
image channel containing only areas where the mCherry signal 
was 50% higher than the EGFP signal. The Spots function was 
then

utilized to mark the mCherry signal and the DAPI-stained 
nuclei of all cells in the image, excluding those within 1 μm of 
the edge of the image. Each image was then manually 
inspected to remove artifacts. The Spots function was also 
utilized for the quantification of PLA puncta.

Machine learning classification of mitochondria 
morphology

Classification of mitochondria was performed on the seg
mentation results obtained from the deep learning-based

AUTOPHAGY 2785



segmentation model that is trained on a simulated dataset 
[43]. The training dataset consists of thousands of images 
that are simulated by one, mimicking the geometrical 
shapes of mitochondria, and two, computationally model
ing the process of image formation in a microscope. The 
simulated dataset is curated to closely match the micro
scope parameters of the data to be analyzed. The steps of 
segmentation began with the input confocal fluorescence 
images (EGFP-channel) that were cropped to sizes suitable 
for the deep learning-based segmentation model. The 
results from the segmentation model were then stitched 
back together to the original sizes of the images. The 
morphological classification of the individual mitochondria 
was done based on their branch lengths. For this, the 
segmentation results were first skeletonized using the 
Skan library [74] and the branch lengths of individual 
mitochondria were calculated for each experimental 
group. To prevent noisy segmentations from being 
included in the analysis, entries with branch lengths less 
than the resolution limit of the microscope were excluded. 
The rules for classifying mitochondria into the morpholo
gical classes of dots, rods, and networks were as follows; 
any mitochondria less than 1 µm in length was classified as 
a dot, those having lengths greater than 1 µm were further 
subdivided into rods, if they did not have junctions in their 
skeleton, and networks if they had at least one junction. 
The morphology classification was normalized per image 
frame for 19 or 22 images from each condition, glucose or 
galactose adapted cells respectively.

Statistical analysis

The quantification data acquired using the IMARIS software 
underwent statistical analysis.

For the percentage of cells that contained red-only dots 
we approximated the proportions with normal distributions 
and thereafter we performed a two-tailed Z-test. For the 
average number of red-only dots per cell we assumed that 
these averages followed normal distributions so that a two- 
tailed Z-test could be utilized for the large sample sizes. The 
same was assumed for analysis of average number of PLA 
puncta per cell and for the morphological analysis. For the 
morphological analysis the statistical analysis was performed 
on a per frame basis. For the mitochondrial respiration data 
two-tailed paired t-tests were performed. Multiple compar
ison correction was performed with Bonferroni correction. 
Datasets subjected to quantitative and statistical analysis 
were from a minimum of three independent experiments, 
each independent experiment contained minimum 100 cells 
per condition analyzed. The exception was the dataset for 
PLA puncta quantification that was derived from two inde
pendent experiments and the morphological classification 
which had a dataset made from a single independent experi
ment. The PLA dataset contained minimum 50 cells per 
condition analyzed for each independent experiment, while 
the morphological classification was based on a single qua
litative dataset of approximately 20 frames with representa
tive cells from each condition. The data in graphs is 
represented as the mean ± SEM, individual datapoints are 

per frame averages. Statistical significance in the form of 
p-value is shown as * p < 0.05, ** p < 0.01, *** p < 0.001 and 
**** p < 0.0001.
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ABSTRACT
Nucleus, chromatin, and chromosome organization studies heavily rely on fluorescence micro
scopy imaging to elucidate the distribution and abundance of structural and regulatory compo
nents. Three-dimensional (3D) image stacks are a source of quantitative data on signal intensity 
level and distribution and on the type and shape of distribution patterns in space. Their analysis 
can lead to novel insights that are otherwise missed in qualitative-only analyses. Quantitative 
image analysis requires specific software and workflows for image rendering, processing, seg
mentation, setting measurement points and reference frames and exporting target data before 
further numerical processing and plotting. These tasks often call for the development of custo
mized computational scripts and require an expertise that is not broadly available to the com
munity of experimental biologists. Yet, the increasing accessibility of high- and super-resolution 
imaging methods fuels the demand for user-friendly image analysis workflows. Here, we provide 
a compendium of strategies developed by participants of a training school from the COST action 
INDEPTH to analyze the spatial distribution of nuclear and chromosomal signals from 3D image 
stacks, acquired by diffraction-limited confocal microscopy and super-resolution microscopy 
methods (SIM and STED). While the examples make use of one specific commercial software 
package, the workflows can easily be adapted to concurrent commercial and open-source soft
ware. The aim is to encourage biologists lacking custom-script-based expertise to venture into 
quantitative image analysis and to better exploit the discovery potential of their images.

Abbreviations: 3D FISH: three-dimensional fluorescence in situ hybridization; 3D: three- 
dimensional; ASY1: ASYNAPTIC 1; CC: chromocenters; CO: Crossover; DAPI: 4',6-diamidino-2-phe
nylindole; DMC1: DNA MEIOTIC RECOMBINASE 1; DSB: Double-Strand Break; FISH: fluorescence 
in situ hybridization; GFP: GREEN FLUORESCENT PROTEIN; HEI10: HUMAN ENHANCER OF 
INVASION 10; NCO: Non-Crossover; NE: Nuclear Envelope; Oligo-FISH: oligonucleotide fluorescence 
in situ hybridization; RNPII: RNA Polymerase II; SC: Synaptonemal Complex; SIM: structured 
illumination microscopy; ZMM (ZIP: MSH4: MSH5 and MER3 proteins); ZYP1: ZIPPER-LIKE 
PROTEIN 1.
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Introduction

Elucidating the spatial organization of eukaryotic 
genomes, their structural and compositional

dynamics during cellular processes and functional 
relationship with the nucleus, is a keystone of 
three-dimensional (3D) genomics. 3D genomics
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aims to decipher the functional, 3D organizing 
principles of the chromosomes, chromatin 
domains and nucleus that contribute to transcrip
tion, replication, repair, and recombination. 
Understanding the 3D genome requires multidis
ciplinary methods including high-throughput, 
sequencing-based, molecular profiling techniques, 
computational simulation-based biophysical and 
mathematical modeling, and microscopy imaging 
at high-to-super resolution and in three- 
dimensions [1,2]. Microscopy followed by image 
analysis provides the opportunity to measure chro
mosome and chromatin structures down to the 
nanoscale, with a few kilobase resolution. This 
can inform on the genomic interactions in situ 
and the spatial organization of genomic domains 
in relation to the 3D nuclear space and its func
tional compartments [3,4].

Venturing into these opportunities to probe 
for the spatial organization of the genome 
in situ requires dedicated imaging and image 
analysis procedures, recently captured by the 
concept of quantitative, data-driven microscopy 
[1]. Quantitative image analysis for nuclear and 
chromosomal studies can be implemented at 
different levels of complexity, depending on 
the research question and, often, the expertise 
available. For instance, a simple level consists of 
scoring structures or patterns on the image 
based on user-defined classification. This can 
be applied when the immunolabelled chromatin 
protein, or FISH-labeled genomic domain, 
shows a very distinct distribution pattern (e.g. 
punctuate vs diffuse), varying between treat
ments or genotypes. In this case, quantifying 
the relative occurrence of pattern categories by 
scoring may be sufficient to address the original 
question. Manual scoring can also be used to 
quantify a moderate number of labeled regions 
(e.g., number of FISH signals or nuclear 
bodies). These categorical, quantitative 
approaches have the virtue to be accessible to 
all experimentalists, without sophisticated soft
ware. They allow to characterize relatively sim
ple signal distribution patterns, providing, 
however, a limited number of samples, and 
double-blind scoring to avoid cognitive biases. 
Yet, for many images (e.g., from high- 
throughput imaging), images with multiple

labels, showing complex spatial patterns of sig
nal distribution, with continuous (rather than 
discrete) variation in signal abundance, or 
a combination of all, require computationally 
driven processing approaches for quantitative 
analyses. A core step required is image segmen
tation. This process partitions the image based 
on the signal distribution into digital objects 
identifying biologically relevant structures. 
Various image segmentation methods and algo
rithms exist. These perform differently depend
ing on the signal distribution [5], with deep- 
learning approaches for automated segmenta
tion tasks at a large scale being continuously 
developed [6]. Once the image is segmented, 
multiple features can be extracted from the 3D 
digital objects, for instance, object number, size 
and shape; signal intensity and variance per 
object type, texture of the signal, channel and 
position in the image; distance relationships, 
and spatial distribution. Practically, these fea
tures are highly relevant to analyze the spatial 
organization of chromatin, chromosome and 
nuclear components in situ.

The field of chromatin, chromosome and 
nuclear organization studies would greatly benefit 
from the broader deployment of image proces
sing-based quantitative analyses [2,3]. Several 
tools and packages have been developed in the 
past years based on open-source software, includ
ing for the 3D spatial analysis of nuclear organi
zation [7–11]. Yet, a major hurdle for most 
‘biology-only’ oriented labs is the lack of compu
tational expertise for customizing the image pro
cessing scripts, for large data handling, the lack of 
template workflows, or a combination thereof. 
Key concepts, from image acquisition to quanti
tative data, have been framed in recent years, for 
applications in cell biology, but also to set good 
practice and standards in the field [1,12]. Efforts 
are undertaken to promote education and sup
port in image analysis for scientists dealing with 
biological images [13]. This resource paper con
tributes to these efforts by providing a compen
dium of image analysis workflows for nucleus, 
chromatin and chromosome studies, taking 
seven case-studies as examples developed by par
ticipants of the training school of the INDEPTH 
COST action [14].
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The workflows are based on a user-friendly, 
commercial image processing software (Imaris, 
Bitplane, Switzerland) but are conceptually applic
able to concurrent (commercial or open source) 
software as discussed in this paper. In addition, 
although they largely borrow examples from plant 
nuclei and chromosomes, they remain transferable 
to the study of animal nuclei. Indeed, the organi
zation of the nucleus, including the nuclear envel
ope, chromatin domains and chromosomes, share 
common organizing principles in plants and ani
mals [15–18]

The workflows associated with each case study 
are briefly described below and are illustrated in 
the related figures. Each workflow is associated 
with a Supplemental File folder that includes 
a step-by-step guideline (text); a table summariz
ing the main step functions and parameters used 
on the training image; one or two training images 
per workflow; and, for workflow 1, a video tutor
ial. Training image datasets are available on the 
INDEPTH-OMERO repository [13,14].1

Analyzing the spatial distribution of transcription 
clusters

In mammals, a radial gradient model of transcrip
tion in the nucleus has been proposed [19,20]. In 
plants, including the Arabidopsis thaliana 
(Arabidopsis) plant model, little is known about 
the spatial, 3D distribution of transcription. 
Transcriptional activity in the nucleus can be 
visualized in situ by immunolabeling the active 
isoform of RNA Polymerase II (RNPII). In 
Arabidopsis, super-resolution imaging of RNPII 
has shown a reticulate pattern throughout the 
nucleoplasm along which distributed clusters of 
variable size and intensity exist [21,22].

To resolve the spatial distribution of RNPII 
signals in Arabidopsis nuclei in 3D, we imaged 
RNPII and DNA using 3D-STED microscopy. To 
quantify RNPII foci distribution, we designed an 
image analysis workflow (Figure 1a and 
Supplemental File 1). Sample preparation and 
imaging are described elsewhere [23]. 
Deconvolved STED images are segmented using 
the Imaris software (Bitplane, Switzerland) to 
create digital objects corresponding to the 
nucleus, the nucleolus, the chromocenters and

the RNPII signals (Figure 1b-d, Supplemental 
File 1 – Video 1). The surface object correspond
ing to the nucleus is also used to apply a 3D mask 
to separate the true image from the background 
signal (compare the framed regions in Figure 1b- 
c). While the nucleus and nucleolus are segmen
ted based on smoothed, manual contours, hetero
chromatin is segmented using the supervised 
automated tool. Chromocenters (CCs) are typi
cally large, brightly stained regions. In 
Arabidopsis nuclei, these are discrete and rela
tively easy to segment (Figure 1d, inset d1). 
Super-resolution imaging revealed that additional 
heterochromatin regions, which we termed nano
chromocenters (nanoCC), can also be segmented 
(Figure 1d, inset d2). RNPII signal shows 
a complex nuclear distribution in Arabidopsis 
nuclei: rather than being discrete, it spreads 
unevenly in a reticulated manner with, however, 
clearly identifiable local clusters [22]. Our aim 
was to segment the image to discretize RNPII 
signal and focus on the clusters, considering 
their variable size, to further analyze their varia
bility in intensity, size and spatial distribution. 
We applied the growing spot function in an itera
tive manner and could capture 70–80% of the 
RNPII signal in spots of variable size (Figure 1e, 
inset e2). This stepwise segmentation resulted in 
a digital image composed of objects capturing the 
nucleus, the nucleolus, the chromocenters and 
RNPII clusters (Figure 1f). Variables of interest, 
such as signal intensity per channel, object size 
and shape and distance between objects (spot-to- 
spot, spot-to-surface) were exported for each 
object type and channel.

The high number of variables, object type, 
channels, image replicates and levels of compar
ison (such as genotypes and treatment) drama
tically increases data complexity. To facilitate 
data exploration, we built a stand-alone data 
visualization interface named DataViz (https:// 
github.com/barouxlab/DataViz) which allows 
one to interactively plot all, or a subset of, 
data. This also enables custom variable creation 
for the normalization of distances and intensity 
per image (Figure 1g-i, Supplemental File 1 – 
Dataviz_guidelines). Here, we provide a few 
examples of violin plots (Figure 1g), density 
distributions (Figure 1h) and scatter plots with
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Figure 1. Analysis of the spatial distribution of RNA Pol II clusters in intact nuclei. (a) Overview of the workflow illustrated in 
b-i; (b) 3D projection of a 3D-STED image reporting on immunolabelled RNA Pol II (isoform phosphorylated on SerP, green, RNPII- 
ser2P) and DNA (magenta, Hoechst 580CP [26]), raw image; (c) Same image following deconvolution, nucleus contour segmentation 
and masking; (d) Intensity-coded coloring mode (Fire) of the DNA channel and frames magnified in the insets showing examples of
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density contours (Figure 1i). The mean intensity, 
normalized per nucleus, of the DNA signal 
shows that the average and range of chromatin 
compaction in CC and nanoCC is largely simi
lar, while nanoCC occasionally shows a higher 
compaction (upper tail of the violin plot, Figure 
1g). By contrast, and as expected for transcrip
tionally active regions, chromatin is, on average, 
2–3x less condensed in the RNPII-S2P clusters 
(Figure 1g). Also, plotting the shortest distance 
of each object to the nucleus surface (Figure 1g, 
right plot: the negative values indicate distance 
toward the nucleus interior), confirms the per
ipheral localization of CC as already described 
[24,25], an apparent enrichment of the nanoCC 
toward the periphery (although less pronounced 
than CC), and spreading of the RNPII-S2P clus
ters from the periphery toward the nuclear inter
ior (with an apparent decreasing occurrence 
linked to the presence of the nucleolus). 
Further, plotting the density distribution of 
RNPII-S2P signals in the clusters (normalized 
mean intensity) allows detecting different struc
tures of the RNPII landscape between different 
treatments (A and B in the example provided 
Figure 1h). Finally, DataViz enables exploring 
the relationship between two continuous vari
ables using scatter plots, with or without density 
contours. In the example provided Figure 1i, we 
interrogated the relationship between the dis
tance to the nucleus boundary and the mean 
DNA intensity for each of the nuclear domains 
segmented as CC, nanoCC and S2P clusters. The 
plots suggested (i) two categories of CC distinc
tive mostly by their intensity but slightly differ
ent with regard to their peripheral position and

that (ii) nanoCC and transcription clusters clo
ser to the periphery are on average less compact 
than their counterparts located more toward the 
nuclear interior. These are only a few examples 
of the numerous possible plots that collectively 
contribute to data mining and discovery.

The segmentation process described in detail 
in the supplemental material corresponds to 
a user-supervised workflow. The input values 
(threshold, smoothing factor, or filtering values) 
are either software-defined values (and depend 
on image attributes) or customized by the user 
to best capture the biological objects. The para
meters are then saved and re-applied for subse
quent image replicate analyses. If the image 
quality is highly reproducible, it is further possi
ble to apply automated batch-segmentation (fol
lowing the software provider’s instructions). For 
a trained user, the workflow takes ca. 45 min per 
image or less. Finally, this workflow can be 
further applied for the analysis of other types of 
nuclear signals showing punctate distribution 
similar to that in our example.

Analysis of the spatial distribution of proteins 
located at the nuclear periphery

To date, the distribution of nuclear envelope (NE)- 
associated proteins is poorly documented in 
plants. 3D microscopy-based observations may 
provide new insights into the organization of chro
matin domains at the nuclear periphery at the 
single-cell level.

In this example, we developed a workflow to 
quantify the spatial pattern of a protein hetero
geneously distributed within the NE (Figure 2a).

chromocenters (CC, d1) and nanochromocenters (nanoCC, d2) in the original channel (left) and after segmentation and pseudo- 
coloring (right); (e) Intensity-coded coloring mode (Fire) of the RNPII-ser2P channel showing a dense distribution of clusters with 
identifiable intensity peaks, enabling segmentation as adaptive spots (e1, e2), e1: single plane showing the spot contours; e2, 3D 
segment of the image after segmentation, clusters pseudo-colored in green, DNA in magenta. (f) Fully segmented image containing 
surface (nucleus, nucleolus, CC and nanoCC) and spot objects (RNPII-ser2P, abbreviated S2P). (g-i) Data exploration using DataViz 
(github.com/barouxlab/DataViz, Supplemental File 1- Dataviz_guidelines). (g), Violin plots showing a similar DNA density distribution 
in CC and nanoCC but much lower density in S2P clusters (intensity mean, DNA channel, normalized per image) and a sharp 
peripheral location of CC as formerly described (Andrey et al., 2010; Fransz et al., 2002), contrasting with the more dispersed 
distribution of nanoCC and S2P clusters (distance to nucleus surface (0) normalized using the nucleus center of mass as reference);. 
(h) Example showing an application of the workflow, to compare the distribution of RNPII cluster intensities between two 
treatments: A and B. (i) Another example illustrating one of the many analyses enabled by the workflow and DataViz, with density 
scatter plots of DNA intensity means in RNPII clusters as a function of their distance to the nucleus surface. Scale bars: b-f, 2 µm; 
insets, as indicated.
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We imaged Arabidopsis root nuclei expressing 
a GFP-tagged protein associated with the NE 
(NE-GFP, Tatout, Mermet, Boulaflous-Stevens, 
unpublished) from 1 week old seedlings using 
a confocal microscope equipped with an 
Airyscan module [27] (Supplemental File 2- 
Figure 2). The NE-GFP protein is located at 
the NE and forms clusters of variable size; 
these clusters appear to be asymmetrically dis
tributed (arrow, Figure 2b). Intensity-based

coloring of the signal confirmed the enrichment 
of NE-GFP at the equatorial plane of the 
nucleus, in contrast to that at the top and bot
tom poles (Figure 2c and insets). The first step 
in our procedure was to segment the global 
domain of NE-GFP signal using the ‘Surface’ 
function of Imaris (Figure 2d). Subsequently, 
we created a spot at the center of mass of the 
segmented NE-GFP surface (yellow spot, 
Figure 2d) and used it to create a ‘Reference

Figure 2. Analysis of the spatial distribution of a fluorescently tagged protein associated with the nuclear envelope. (a) 
Overview of the Image analysis workflow. Details of the parameters are in supplements. (b) Raw image of NE-GFP (Nuclear 
Envelope – associated protein fused to GFP) signal in a root nucleus; 3D rendering in gray levels suggests an enrichment of the 
protein at the equatorial region of the nucleus (white arrow). (c) Same image (3D) as in (b) using a fire color scale for NE-GFP signal 
intensities display (0–255), c1-c3 insets: cross sections at selected top, middle and bottom planes, respectively. (d) Result of the 
segmentation of the NE-GFP signal domain as a surface (gray); a spot (yellow) is created at the surface’ center-of-mass. (e) a new XYZ 
coordinate system (reference frame) is docked at the center-of-mass. (f) The NE-GFP signal is segmented as spots of adaptive size 
(‘growing spots’) using the channel masked by the surface; spots are classified according to their axial (z) position, the equatorial 
region is defined ±2 µm around the origin. Three spot classes are created located at the top, middle and bottom of the nucleus 
(blue, magenta, green, respectively). f1, f2 insets: XY and XZ sections. (g) The intensity mean of the spots is plotted as a function of 
their axial position (z) relative to the new reference frame for the image shown in (b-f). The colors indicate the ‘top’, ‘middle’ and 
‘bottom’ classes, respectively. (h) The volume and normalized intensity mean of NE-GFP spots are plotted for each class, for n = 8 
nuclei images segmented following this workflow. Kruskal-Wallis and Dunn’s multiple comparison tests with bottom vs middle and 
top vs middle indicate statistically significant differences with P < 0.001 (***) for both variables. Scale bars: 2 µm.
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frame’ object (Figure 2e). This new XYZ coordi
nate system at the nucleus’ center allows to 
classify the NE-GFP clusters at a later stage. 
The NE-GFP clusters are segmented as spots of 
adaptive size on the NE-GFP domain masked on 
the surface created at step 1 (Step 3–4, 
Supplemental File 2). Spots were classified into 
three categories (top:blue, middle:magenta, bot
tom:green) according to their axial position in 
the coordinate system defined at step 2 (Step 5, 
Figure 2f). The ‘middle’ class is defined by 
a region encompassing the origin of this coordi
nate system from −2 to +2 µm along the z-axis. 
The ‘top’ and ‘bottom’ classes capture the spots 
above and below this equatorial region, respec
tively. In addition, this step included curation of 
the segmentation results to (i) keep spots strictly 
located at the periphery (removing outliers 
located internally due to surface invaginations) 
and (ii) to select spots of biologically relevant 
size (up to 600 nm diameter, ~1.1 µm3; detailed 
procedure in Supplemental File 2). A 2D-plot of 
the mean intensity of segmented NE-GFP spots 
according to their axial (x) position in this coor
dinated system revealed higher signal intensity 
among spots located at the equatorial plane 
(‘middle’ class, Figure 2g). The segmentation of 
multiple images supported this finding 
(Figure 2h). Importantly, as fluorescence inten
sities varied between images, the mean intensity 
of each spot was normalized, following export, 
using the mean intensity within the NE-GFP 
surface for each image (Figure 2h). This analysis 
revealed that both the volume and mean inten
sity of NE-GFP clusters in the equatorial plane 
(‘middle’ class) are significantly different from 
that of the clusters located at the polar regions 
(‘top’ and ‘bottom’ classes; Figure 2h, Kruskal- 
Wallis and Dunn’s multiple comparison test 
with P < 0.0001 for all pairs).

In conclusion, this image analysis workflow 
enables quantification of the spatial heterogene
ity of proteins associated with the nuclear envel
ope. In combination with mutant genetics, this 
approach enables one to assess the quantitative 
influence of candidate regulators and that of 
intrinsic (protein) domains on spatial protein 
localization.

Analysis of protein distribution on meiotic 
chromosomes

Meiosis is a special type of cell division occurring 
during sexual reproduction and enabling genetic 
recombination. During the first stage of meiosis, 
prophase I, homologous chromosomes align along 
their entire length by a protein structure called the 
synaptonemal complex (SC). This process is essen
tial for crossover (CO) formation in many eukar
yotes. Prophase I is itself divided into five 
substages – leptotene, zygotene, pachytene, diplo
tene and diakinesis. Each stage can be monitored 
by immunostaining specific proteins involved in 
SC formation. The most common targets are ASY1 
(ASYNAPTIC 1) and ZYP1 (ZIPPER-LIKE 1) 
[28]. During prophase I, homologous recombina
tion starts with the formation of SPO11- 
programmed DNA double-strand breaks (DSB) 
[29]. These DSBs are subsequently processed and 
recombinases such as DMC1 (DNA MEIOTIC 
RECOMBINASE 1) mediate strand invasion, 
essential for CO formation [30]. In barley, a large 
number of DSBs are formed [31], but only 13–22 
(depending on the cultivar and scoring method) 
are repaired to crossover (CO), while the rest are 
repaired as non-crossovers (NCO) [32,33]. What 
controls the fate of DSB (CO vs NCO) is poorly 
understood. A current hypothesis involves HEI10 
(HUMAN ENHANCER OF INVASION 10), 
a ZMM class-of-protein in the CO repair pathway, 
as an early indicator [34].

To elucidate whether HEI10 also contributes 
to DSB fate designation in barley, one approach 
is to elucidate the dynamics of HEI10 foci along 
prophase chromosomes at early, mid, and late 
stages, and in relation to DMC1 at early pro
phase. This approach requires 3D imaging of 
(immunostained) meiotic proteins on prophase 
chromosomes and the scoring of HEI10 vs 
DMC1 foci in relation to the prophase stage. 
We describe here a workflow to process 3D- 
SIM images to enable the scoring and classifica
tion of DMC1 and HEI10 foci depending on 
their size and intensity.

The workflow (Figure 3a) is illustrated with two 
images of barley male meiocytes labeled for com
ponents of the SC (ASY1, ZYP1), processed DSBs
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Figure 3. Analysis of crossover distribution in meiocytes. (a) Overview of the image analysis workflow in 5 steps illustrated 
on two images marking the synaptonemal complex (SC) and crossovers (CO) with different components (provided in 
Supplemental File 3): image 3a (b-g) represents a barley meiocyte at zygotene stage immunostained for DMC1, ZYP1 and 
ASY1 and counterstained for DNA using DAPI. The image was acquired by confocal microscopy (ZEISS LSM 710) as described 
(Colas et al., 2019). Image 3b (h-k) represents a barley meiocyte at the late pachytene stage immunostained for ASY1 (Ch = 2), 
ZYP1 (Ch = 3) and HEI10 (Ch = 4) and counterstained for DNA using DAPI (Ch = 1). The image was acquired by 3D-SIM as 
described previously (Hesse et al., 2019). (b) Original image acquired by confocal imaging, the different labeling are indicated.
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(DMC1) and recombination intermediates 
(HEI10). The first image, shown in Figure 3b-g 
and provided in Supplemental File 3 – Image 3a, 
shows a zygotene stage nucleus labeled with ASY1 
(white), ZYP1 (red), DMC1 (green) and counter
stained with DAPI (blue), was acquired on 
a confocal microscope (Zeiss LSM 710) as per 
Colas et al. [33]. The second image, shown in 
Figure 3h-k and provided in Supplemental File 
3 – Image 3b, shows a pachytene stage nucleus 
labeled with ASY1 (white), ZYP1 (green), HEI10 
(red) and counterstained with DAPI (blue), was 
acquired using 3D-SIM similar as for rye [35]. The 
aim of both images was to segment HEI10 or 
DMC1 foci and to analyze their distribution rela
tive to the SC, their size and their intensity. For 
this, the chromosomes, SC complex and HEI10 or 
DMC1 foci are segmented separately. The detailed 
strategies used for filtering and classifying the 
HEI10 or DMC1 foci are explained in the detailed 
workflow descriptions (Supplemental Files 3). In 
brief, the image analysis followed the steps of 
deconvolution (optional depending on the ima
ging method), chromosome segmentation, SC seg
mentation, CO foci segmentation and 
classification before data export (Figure 3a).

The effect of deconvolution is shown for the 
first image acquired by confocal microscopy to 
reconstruct the image at optical resolution (com
pare the panels Figure 3b and 3c). This step is 
essential for properly estimating the CO dia
meter later (Figure 3d, DMC1 channel inset). 
Next, the DNA (DAPI) staining was used to 
generate a 3D surface of the chromosomes ser
ving as a mask to remove signal noise in the 
image (compare the panels Figure 3c and 3d). 
Note that here, the aim was not to segment the 
chromosomes very precisely, as the masking   

would result in the exclusion of ASY1, ZYP1 and 
DMC1 foci that do not entirely colocalize with 
DNA at that meiotic stage. Hence, permissive 
criteria were preferred in this case. Next, the 
SC complex was segmented on both the ASY1 
and ZYP1 channels, creating two distinct sur
faces (Figure 3e, red: surface ZYP1, white: sur
face ASY1). Finally, DMC1 foci were segmented 
as spot objects using an estimated seed size of 
200 nm (Figure 3f). The algorithm detects all 
possible foci with both low and high intensities. 
Classical studies have so far focused on high- 
intensity foci, whose abundance falls within 
a few hundred [31,33]. By contrast, the workflow 
described here enables one to capture all foci, 
first, irrespective of their intensity, and to clas
sify them according to intensity, during the crea
tion process (Figure 3f, right panel). In this 
example, three classes were created (Figure 3f 
plot, yellow, magenta and cyan classes). 
Alternatively, spots can be classified after data 
export based on normalized signal intensity in 
a third-party software application (for instance, 
using DataViz, see Workflow1). In an intensity 
sum-based classification, we scored 217 DMC1 
spots with medium-to-high intensity (Figure 3f 
plot, magenta and cyan classes) as previously 
reported for a similar stage of meiosis [31,33]. 
The remaining low-intensity spots (Figure 3f 
plot, yellow class) may correspond to either 
immunolabeling noise or unbound proteins. 
Next, we asked whether DMC1 localization was 
correlated with the SC. Indeed, following the 
classification of DMC1 spots in two groups, 
inside or outside the ZYP1 surface, we found 
a significant enrichment of DMC1 signal (based 
on intensity mean) when foci colocalize with 
ZYP1 (Figure 3g). This is one of the many

(c) image following deconvolution to resolve the SC and immunostained CO. (d) segmentation of the chromosomes as surface 
and masking of the ZYP1, ASY1 and DMC1 channels to remove background signal. It allows resolving DMC1 foci at high 
resolution (inset). (e) SC segmentation using the ZYP1 and ASY1 masked channels (f) DMC1 foci segmentation (left) and 
classification according to their intensity (right and inset = intensity plot per category), (g) classification of DMC1 foci according 
to their distance relative to the ZYP1 surface. (h) Original 3d SIM image (image 3b), (i) same image following ZYP1 and HEI10 
segmentation, (j) HEI10 spots were classified according to their intensity (T1, T2, T3 on graph and inset); 20 foci were scored 
(automatic) for the T1 class as described in earlier studies, (k) HEI10 classes differ by the DNA density. Scale bars: 5 µm except 
for the inset d, DMC1 channel (200 nm), Plots (f, g, j, k): Imaris Vantage.
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examples of correlative analyses that can be car
ried-out in such segmented images.

The second image (Figure 3h) was analyzed 
similarly, but deconvolution, chromosome seg
mentation and masking were omitted in this 
case. The ZYP1 surface (Figure 3i, green) was 
used to mask the HEI10 channel to specifically 
focus on HEI10 foci (Figure 3i, red) colocalizing 
with ZYP1. HEI10 spots objects were then classi
fied according to their intensity, considering nota
bly the first and next 2% quantile versus the rest to 
create three classes, T1, T2 and T3, respectively 
(Figure 3j). This approach was formerly described 
to analyze CO distribution during meiosis in 
a fungal species [36]. The surprisingly high num
ber of low-intensity HEI10 foci (T3 class) detected 
by the segmentation in this late pachytene-stage 
nucleus suggests the need for further investigation 
to understand their nature and possible function. 
To further describe the properties of HEI10 
classes, we investigated different relationships and 
found that in most cells, typically high-intensity 
HEI10 foci (T1) localize, on average, on chromo
some regions with higher DNA compaction (DAPI 
mean intensity) compared to low-intensity HEI10 
foci (T3) (Figure 3k).

This image processing workflow facilitates the 
scoring of class I CO and NCO foci across multi
ple images, stages and genotypes, a task largely 
done manually until now. In addition, segmenta
tion is near-exhaustive and includes low-intensity 
foci that were discarded from manual scoring in 
former studies. This raises the question of the 
dynamics of HEI10 and DMC1 foci formation, 
with possible intermediate stages represented by 
low-intensity foci. In addition, it opens the possi
bility to refine the analysis of CO/NCO spatial 
organization and their fine-scale structure. For 
instance, the localization of CO/NCO foci can be 
measured relatively to the SC components as 
a function of their intensity, and as a function of 
local chromatin compaction.

Analysis of nuclear speckle distribution

A distinguishing feature of nuclear topography is 
the ability to accommodate a variety of subnuc
lear compartments including nuclear bodies. 
Nuclear bodies are membraneless compartments

that spatially partition the nuclear environment 
and are thought to facilitate enzymatic reactions 
[37,38]. Similar to membrane-bound organelles, 
they maintain an effective steady-state structure, 
but likely by different mechanisms [39]. The first- 
identified and best-characterized plant nuclear 
bodies are the nucleolus and Cajal bodies. 
Several other smaller structures have, however, 
also been identified, including speckles, para
speckles, coiled bodies and photobodies [40–42]. 
Unmasking the mechanisms by which cells 
assemble, maintain and regulate nuclear bodies 
and speckles, and the environmental and devel
opmental factors contributing to the process, will 
shed light on their biological functions. For 
instance, splicing regulator (SR) proteins in 
plants localize as speckles, the size and shape of 
which are dependent on cell type, metabolic state 
and transcriptional activity [41–43].

One way to elucidate the speckle dynamics of 
nuclear bodies, which are not membrane-bound, is 
through microscopy imaging and image analysis. 
This approach enables the analysis of their spatial 
distribution and their composition relative to 
other nuclear components and DNA (chromatin) 
density. In this example, we showcase a simple 
image analysis workflow for analyzing the distri
bution of nuclear speckles and bodies. We used 
two images: Supplemental File 4 – image 4a 
reports on the nuclear localization of a plant chro
matin remodeler: a SWI/SNF subunit (called SSSU 
here) forming nuclear speckles in leaf nuclei. 
Supplemental File 4 – image 4b reports on the 
nuclear localization of a mammalian chromatin 
protein (here called CP) and of H3K27me3 form
ing large nuclear bodies in nuclei of mouse naive 
pluripotent embryonic stem cells [44]. CP is a Baz- 
related subunit of the ISWI (Imitation SWItch) 
family remodeling complex factor, interacting 
with SNF2H, a SWI/SNF related remodeler [45] 
(Santoro, Panatta, unpublished).

SSSU was found to interact with PWO1 and 
CRWN1 (Kalyanikrishna, Jourdain, Schubert, 
unpublished), a set of proteins involved in epige
netic gene regulation and chromatin organization at 
the nuclear periphery [46]. CRWN1 (CROWDED 
NUCLEI 1), a nuclear lamina candidate in 
Arabidopsis, interacts with PWO1 (PROLINE- 
TRYPTOPHANE-TRYPTOPHANE-PROLINE
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Figure 4. Analysis of the spatial distribution of nuclear speckles and bodies. (a) Overview of the image analysis workflow, 
details and training images are provided in Supplemental Files 4. The analysis of two images (Supplemental File 4 – image 4a and 
4b) representing plant and animal nuclei are shown in (b-e) and (f-k), respectively. (b) Raw, STED image (3D projection) showing an 
isolated leaf nucleus stained for DNA (magenta, Hoechst 580CP [26],) and immunostained for SSSU (green). (c) Segmentation result: 
the nucleus, chromocenters (CC) and the nuclear speckles (SSSU) were segmented as surface objects (legend, right panel). (d) The 
position of CC and SSSU speckles was plotted relative to the nucleus’ periphery defined by the surface’s boundary (0 = at the 
boundary; negative values = toward the interior), n = 9 nuclei analyzed. (e) The relative enrichment of SSSU on chromatin was 
plotted as the SSSU:DNA mean signal intensity ratio for different classes of speckles defined by their distance to CC (in µm). Plots 
were generated using Dataviz (see Workflow 1) using data from n = 10 segmented nuclei. (f) Confocal image (3D projection) of 
a nucleus from a mouse naïve pluripotent embryonic stem cell stained for DNA (gray, DAPI), immunostained for the chromatin 
protein under study (CP, green) and H3K27me3 (magenta) forming large nuclear bodies; the arrows show truncated nuclei in the 
field of view undesirable for downstream analyses and eliminated upon masking at the next step. (g) Same image after 3D masking 
using the nucleus surface created at step 1. (h) Results of image segmentation: the nucleus, chromocenters (CC) and the nuclear 
bodies (CP and H3K27me3) were segmented as surface objects (legend, right panel). (i-k) Quantitative analysis of CC and nuclear 
bodies: volume: (i) distance to the nucleus periphery (j) and overlapping volume ratios (k, left: CC and CP overlap, right: CP and 
H3K27me3 overlap). Plots were generated using Imaris Vantage. Scale bar: (a-b), 2µm; (f-h), 3 µm.
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INTERACTOR OF POLYCOMBS1), a plant- 
specific protein associated with histones and PRC2 
(POLYCOMBREPRESSIVE COMPLEX 2) [46]. 
Due to its possible interaction with CRWN1, we 
asked whether SSSU is also located preferentially at 
the nuclear periphery. To answer this question, we 
tagged SSSU with YFP (YELLOW FLUORESCENT 
PROTEIN) and imaged nuclei expressing SSSU- 
YFP using STED microscopy. The image analysis 
workflow consists of only a few steps (Figure 4a): 
STED images reporting on the immunolabeled 
SSSU-YFP and DNA counterstaining (Figure 4b) 
were segmented for the nucleus, chromocenters 
(CC) and SSSU-speckles, using the surface tool. 
For segmentation of the nucleus, smooth, manual 
contours were used, while for segmenting CCs, 
automated, parameter-controlled settings were 
applied. SSSU speckles were segmented as spot 
objects of ca. 200 nm diameter. Segmentation data 
of several images were exported and plotted using 
DataViz (see workflow 1, Supplemental File 1 – 
Dataviz_guidelines). SSSU-YFP speckles showed 
a broad spatial distribution, with no clear preferen
tial enrichment toward the periphery (Figure 4d), in 
contrast to chromocenters as previously shown 
[24,25]. We found, however, that SSSU speckles 
are not uniform: they differ in their relative enrich
ment (SSSU:DNA ratio), which correlates with the 
proximity to CC (Figure 4e). Our analysis demon
strates that the nuclear speckles formed by SSSU are 
not preferentially enriched at the nuclear periphery 
as would have been expected from their biochemical 
interaction with CRWN1. The analysis suggests 
a differential enrichment depending on the proxi
mity to other nuclear bodies, the CC, a relationship 
whose functional relevance remains to be investi
gated. This preliminary finding was unexpected and 
was revealed thanks to the possibility to explore 
multiple relationships between distance and inten
sity measurements in DataViz using segmentation 
data generated using this workflow.

In the second example, we were interested in 
the CP protein localization relative to the 
repressive nuclear compartments formed by 
heterochromatin (chromocenters) and 
H3K27me3 in nuclei of mouse naive pluripo
tent embryonic stem cells. Nuclei stained for 
DNA and immunostained for CP and

H3K27me3 were imaged at high resolution by 
confocal microscopy (Figure 4f). To analyze the 
distribution of CP bodies, we segmented the 
nucleus, the chromocenters (CC), CP and 
H3K27me3 nuclear bodies, as surfaces of adap
tive size (Figure 4g-h). Volume measurements 
show that CP bodies are smaller than CC but 
larger than H3K27me3 bodies (Figure 4i, p < 
0.001, Wilcoxon test) and are similarly distrib
uted toward the periphery compared to CC and 
H3K27me3 bodies (Figure 4j). The image shows 
an intricate relationship between CP bodies, CC 
and H3K27me3 bodies. Measuring the over
lapped volume ratio is a useful approach to 
quantify the fraction of spatially colocalizing 
bodies (Figure 4k), revealing in our case 
a frequent overlap of 50% or more of CP bodies 
with H3K27me3 bodies. Conversely, the overlap 
with CCs is less frequent and occurs to a lower 
extent (<20%). This image analysis workflow 
thus allows one to quantify features of the 
nuclear body distribution that are otherwise 
underappreciated with qualitative data alone. 
Based on this simple workflow, further proces
sing steps can be implemented that would con
tribute to a refined analysis of the spatial 
pattern of CP proteins relative to chromatin 
density and H3K27me3 levels. This can include, 
for instance, the creation of intensity-based 
colocalization or ratio channels (not shown).

Analysis of the higher-order chromatin 
organization in mitotic chromosomes

During mitosis, chromosomes reassemble into 
compact bodies resulting from increased chroma
tin fiber looping within the chromatids [47]. How 
sister chromatids resolve into distinct structures 
and which topological rearrangement contributes 
to the final organization start being understood. 
Yet, questions remain concerning the molecular 
mechanisms and the regulation of this dynamic 
process [47]. Also, whether the topological 
arrangement in mitotic chromosomes is conserved 
during evolution is not well known and is motivat
ing for comparative investigations in less-well- 
studied models [48].
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Oligo-FISH combined with spatial super- 
resolution structured illumination microscopy (3D- 
SIM) is a useful approach for resolving helical versus 
non-helical arrangement of chromatin fibers in

chromatids. For instance, this method allowed us 
to confirm that the chromatids of barley metaphase 
chromosomes are formed by a helically wound 
~400 nm chromatin fiber, the so-called

Figure 5. Analysis of the metaphase chromosome ultrastructure using volume measurement of oligo-FISH labeled regions. 
(a) Overview of the image analysis workflow. (b) 3D-SIM raw image slice from a stack containing 30 slices at widefield resolution. (c) 
3D-SIM processed image slice showing increased super-resolution. (d) Display adjustment to optimize the visualization of signals 
with varying intensities. (e) Segmentation results: the chromosome is segmented using the DAPI channel and the generated 3D 
surface is used as a mask to specifically retain chromosomal FISH signals and exclude the background. The segmentation is 
presented sequentially for different FISH probe groups (e1-e3), and the result is shown in the merge (e4). e1, telomere, centromere, 
and Stork probes; e2, Subtelomeres, Eagle, Rhea and Flamingo probes; e3, 45SrDNA (Nucleolus Organizing Region, NOR), Ostrich and 
Moa probes. The Oligo-FISH probes label the bottom part of chromosome 5HL. (f) Side view of a 3D movie generated via the 
‘Animation‘ tool (Supplemental File 5 – video 1). (g) Volume data are read in the ‘Statistics’Tab for selected surfaces. (h) Data 
visualization using the ‘Vantage‘ tool for individual objects (top).
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chromonema [49]. Additionally, by measuring the 
volume of oligo-FISH painted regions and based on 
the DNA quantity used for the probes, it was possible 
to calculate the chromatin compaction. With this 
approach, different chromatin densities were found 
along the barley chromosome arm 5 HL. Interstitial 
arm regions were ~1.7 times more compact than 
regions adjacent to the subtelomeres (34.1 vs. 19.5 
Mb/µm3, respectively) [49].

Workflow 5 describes the processing procedure 
to segment an individual 5 H chromosome and the 
different FISH signals to obtain quantitative mea
surements on the degree of chromatin compaction 
(Figure 5a; Supplemental File 5). In this example, 
centromeres, 45SrDNA (NOR, nucleolus organizing 
regions) telomeres, and subtelomeres of somatic 
metaphase chromosomes were labeled with specific 
FISH probes as described [49]. In addition, half- 
and full helical turns of the chromonema were 
painted by oligo-FISH at the long arm of chromo
some 5H (Figure 5, probes were named according 
to birds: Stork, Eagle, Ostrich, Rhea, Moa, 
Flamingo) [49]. 3D-SIM raw data image stacks 
(Figure 5b) were acquired using an Elyra PS.1 
microscope system equipped with a 63×/1.4 Oil 
Plan-Apochromat objective, processed with the 
software ZENBlack (Carl Zeiss GmbH) (Figure 5c) 
[50] and converted into an Imaris file. DAPI and 
FISH signal intensities were adjusted for improving 
the visualization using the ‘Display Adjustment’ 
tool (Figure 5d). The DAPI-labeled chromosome 
was segmented using the surface tool, and the sur
face was used to mask the image to remove the 
background signal outside this region of interest. 
Additional surfaces of the other, differently colored 
FISH signals were generated (Figure 5e-f, 
Supplemental File 5 – Video 1). The surface volume 
data were established (Figure 5g), exported for 
further analysis by compiling several images, and 
used to calculate the volumetric density of the dif
ferent FISH-labeled regions along the chromosome 
[49]. An example plot for one chromosome is 
shown in Figure 5h using Vantage.

Analysis of centromere and telomere positioning

Arabidopsis and barley are eukaryotic models 
contrasting in their 3D interphase chromosome

organization. Arabidopsis has a small genome 
of about 157 Mbp per haploid DNA content 
(1C) packed into 5 chromosomes (2 n = 10), 
whereas the barley genome is large, with 
around 5.1 Gbp/1C divided into 7 chromo
somes (2 n = 14) [51,52]. In Arabidopsis, cen
tromeres are distributed relatively equally 
around the nuclear periphery to which they 
are attached, while telomeres are associated 
with nucleoli and each chromosome occupies 
a discrete territory within the nuclear space 
[53]. In barley, interphase chromosomes are 
organized in the so-called Rabl configuration 
with the centromeres and telomeres clustered 
at opposite nuclear poles [52]. While the Rabl 
configuration has long been thought to be pre
valent among monocot species, recent studies 
show that it also occurs in dicot species and 
that variations exist within the same phyloge
netic group [54]. In addition, this peculiar 
organization can occur in a tissue-specific man
ner, as in rice [55]. To better characterize the 
occurrence of Rabl vs. non-Rabl configurations 
and their possible intermediates, in different 
species and tissue types, there is a need to 
define an image analysis workflow quantifying 
telomere and centromere distribution in the 
nuclear space. We present such a workflow 
(overview Figure 6a) illustrated with two exam
ples, corresponding to studies of chromosome 
organization in a monocot species (barley, 
Figure 6b-f) and in a dicot species 
(Limnanthes floccosa subsp. bellingeriana, 
Figure 6g-j). Details, parameters, and demo 
images are available in Supplemental Files 6.

A first example is given for barley nuclei 
(Figure 6b-f). Nuclei extracted from seeds 
(Figure 6b) were flow-sorted as described [56] 
and labeled by FISH using fluorescently labeled 
oligoprobes (Cy3-labeled CEREBA-centromeric 
repeat; [57] and Cy5-labeled Arabidopsis-type 
telomeric repeats [58]). Z-stack images were 
acquired with an epifluorescence microscope con
nected with a spinning disk (Andor, Oxford 
Instruments, UK). Centromeric and telomeric 
FISH signals and the DNA counterstain (DAPI) 
were pseudo-colored in magenta, yellow, and gray, 
respectively. Two types of seed nuclei are shown 
(Type I, Type II, Figure 6c). Images are first
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Figure 6. Analysis of centromere and telomere positioning in the interphase nucleus (continued). (a) Workflow overview showing 
the main steps to process the 3D image and identify centromeres and telomeres and their position in an interphase nucleus. The 
workflow is illustrated with seed nuclei from barley (a-f) and leaf nuclei from Limnanthes (g-i). (b) Barley plant, seeds and isolated 
nuclei stained by FISH for centromere and telomeric repeats (see main text for details). (c) Raw images (3D projections) of type I and 
type II nuclei showing centromeric (magenta) and telomeric (yellow) FISH probes signals, counterstained for DNA (DAPI, gray). (d) 
Telomeric (TEL) and centromeric (CEN) signals were segmented as spots. (e) 3D rendering together with nucleus surfaces (gray) 
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segmented on the channels reporting on FISH 
signals to create spot objects corresponding to 
centromeres (CEN) and telomeres (TEL), 
(Figure 6d) using the automated tool. The spot 
diameter is adjusted to the average size of FISH 
foci (ca 300 nm). The nuclear surface is rendered 
using a low smoothing factor (Figure 6e). For 
a better visualization of the spot distribution inside 
the nucleus, the surface is set to transparent or can 
be digitally sectioned using a clipping plane 
(Figure 6e). This segmentation and 3D visualiza
tion approach allowed us to realize that the seed 
nuclei population was composed of two categories 
of nuclei. In type I nuclei, centromeric and telo
meric spots are grouped to opposite sides of the 
nucleus, reflecting Rabl-like features. In type II 
nuclei, they distribute in the whole 3D nuclear 
space, which corresponds to a non-Rabl configura
tion. To support this observation by quantitative 
measurements, we exported three types of distance 
measurements (Figure 6f): (i) shortest distance 
between centromeric and telomeric spots 
(Figure 6f1), (ii) shortest distance of centromeres 
and telomeres to the surface, corresponding to the 
nucleus border (Figure 6f2), and (iii) average dis
tance to top five neighboring spots for each group 
(centromeres, telomeres, Figure 6f3). Because dis
tances depend on the nucleus size, we normalized 
them using the nucleus diameter (graphs shown in 
Figure 6f express relative distances). The quantita
tive analysis shown in Figure 6f based on ca. 20 
nuclei supported a contrasted spatial distribution 
of telomeres and centromeres in the two cate
gories, with notably clear segregation of telomere 
and centromere groups in Type I nuclei (f1), 
located closely to the nuclear surface (f2). We

also noticed a shorter distance between telomeres 
and centromeres in Type II nuclei, which was 
unexpected. Because this type of nuclei is fre
quently highly endoreduplicated, this led us to 
investigate further the relationship between ploidy 
and chromosomal organization (Nowicka, Pecinka 
et al., submitted).

A second example is shown using nuclei from 
L. floccosa subsp. bellingeriana (Figure 6g-j). 
Nuclei extraction from different types of tissue, 
FISH protocol and imaging were previously 
described by [54,59–61]. A similar procedure 
was applied to segment the nucleus based on 
DAPI staining (gray) and FISH signal reporting 
on the telomeres (cyan), centromeres (magenta) 
and 35S rDNA loci (yellow) (Figure 6h-i). In this 
example, centromeres and telomeres clearly 
showed clustering toward the nuclear periphery 
as shown with a median distance of spots around 
0.6 µm (TEL) to 1 µm (CEN) in a nucleus of ca. 
12 µm diameter (Figure 6j). We used this work
flow for the analysis of nuclear organization in 
Crucifer genomes [54], in seven diploid species 
with up to 26-fold variation in genome size. This 
allowed to unveil species-specific patterns in 
nuclear organization [54].

For a trained user, the workflow takes approxi
mately 20 minutes or less per image. This work
flow can be used to compare the spatial 
distribution of chromosomes at interphase using 
centromeres and telomeres as references. Distance 
measurements across image replicates offer the 
possibility to detect quantitative differences invisi
ble to the eye, between tissue types and cell types 
and to characterize potential mutant phenotypes 
in genetic analyses.

following segmentation, whole nuclei (left) or clipped (right), exposing the CEN and TEL signals in the interior of the nucleus. (f) The
distribution of telomeres and centromeres is described according to three measurements derived from spot-to-spot or spot-to- 
surface statistics: shortest distance between centromeres and telomeres (f1), shortest distance of centromeres to the nucleus surface 
and shortest distance of telomeres to the nucleus surface (f2), inter-centromere and inter-telomere distances computed as the 
average distance to the nearest 5 neighbor spots of the same category (f3). In blue, schematic representation of the measured 
distance. Distances were exported and normalized to the nucleus diameter (f1, f3) or nucleus volume (f2) and plotted using the 
ggplot GUI online tool (https://shiny.gmw.rug.nl/ggplotgui/). The lower and upper hinges of the boxplots correspond to the first and 
third quartiles of the data, respectively, the black lines within the boxes mark the median. Five to ten nuclei were used for each 
measurement. Black spots beyond the whiskers represent outliers. (g-j) Illustration of the workflow on a Limnanthes leaf nucleus, (g) 
Limnanthes floccosa subsp. bellingeriana, (h) Raw image (3D projection) of a nucleus stained for centromeric repeats (magenta), 
telomeric repeats (cyan) and rDNA repeats (yellow) by FISH, counterstained for DNA (DAPI, gray), imaged by confocal laser scanning 
microscopy, (i) 3D nucleus following segmentation of FISH signals and DNA as surfaces. (j) Distance of the different segmented 
groups relative to the nucleus surface were plotted in Imaris Vantage; images showing a distance-coded coloring are shown for 
centromeres (CEN) and telomeres (TEL).
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Figure 7. Division angle measurement using surface-rendered cellular structures in living barley root cells. (next page). 
(a) Workflow overview showing the sequence of tasks to process a raw picture up to the setting of measurement lines within 
the 3D cell space. (b) Confocal imaging of barley root tissue from a young seedling expressing CFP-H2B marking the 
chromosomes (cyan) and RFP-CenH3 marking the centromeres (magenta). In addition, cell wall autofluorescence upon UV 
excitation was used to mark the cell’s boundaries (cyan). The image is a partial projection from a z-stack. (c) 3D cropping of the 
image to select a region of interest containing a dividing cell in mitotic anaphase (yellow frame). Orthogonal projections are 
shown in xy, yz and xz. (d) The cropped image is rendered in 3D using the ‘blend’ mode. (e) ‘Surface’ rendering of segmented 
centromeres (magenta) and the cell wall (cyan). (f) Setting of ‘Measurement points’ and their connective lines. AB defines the 
axis along which chromosomes are pulled (orthogonal to the chromosome plates), BC defines the cell’s elongation axis. (g) 
Detailed visualization of the lower metaphase plate and angle formed between both axes defined by AB and BC measurement 
lines. The angle is measured in 3D by Imaris. Scale bars: b-f, 5 μm; g, 1 μm.

NUCLEUS 295



Analysis of mitotic chromosome orientation 
during division

Mitosis is the process by which organisms 
increase the number of cells. In plants, the 
highest number of mitotically active cells can 
be found in the root and shoot apical meristems 
(RAM and SAM, respectively) [62]. We focused 
the analysis on chromosome organization and 
orientation in living barley roots. Both cell divi
sion orientation and cell elongation contribute 
to the oriented growth of the root. Changes in 
the mitotic division orientation affect root 
shape and anatomy [63]. In Vicia faba, chro
mosome positioning correlates with the cell 
division plane and ultimately cell shape [64]. 
Notably, it was speculated that cell size could 
be a limiting factor forcing the spindle axis to 
be tilted, deviating slightly from the main axis 
of cell and organ elongation. Analyzing the 
orientation of mitotic chromosomes during 
cell division is thus relevant to understand this 
intricate relationship.

We designed a 3D microscopic image analysis 
workflow described in Figure 7a and detailed in 
Supplemental Files 7 containing a protocol and 
troubleshooting tips. We used barley chromatin 
and centromere fluorescent marker lines (FMLs) 
expressing translational fusions of histone H2B 
with CYAN FLUORESCENT PROTEIN (CFP- 
H2B) and -CENTROMERIC HISTONE H3 with 
RED FLUORESCENT PROTEIN (RFP-CENH3), 
respectively (Kaduchová, Pecinka et al., in pre
paration). Z-stack images were acquired using 
a Leica TCS SP8 STED3X confocal microscope 
equipped with a Leica Application Suite X (LAS- 
X) software version 3.5.5 with a Leica Lightning 
module (Leica, Buffalo Grove, IL, USA) (Leica 
Microsystems, Wetzlar, Germany). In addition, 
we took advantage of the fact that barley cell 
walls have an autofluorescence detectable in CFP 
emission spectra [65], allowing simultaneous 
visualization of chromosomes, centromeres, and 
cell walls. Centromere signals were pseudo- 
colored in magenta, chromatin with cell walls in 
cyan. The raw image (Figure 7b) presenting several 
cells in the root was cropped around one cell 
showing chromosomes at anaphase (Figure 7c). 
Centromeres were segmented with the ‘spots’ tool

(Figure 7d). Chromosomes and cell walls were 
segmented using the ‘surface’ tool (Figure 7e). 
Using the tool ‘Measurement point’, we created 
spots (connected by a measurement line) at key 
positions, providing information on the cell elon
gation axis (A-B), on the pulling axis of the chro
mosomes (A’-B) and a reference axis (B-C) 
(Figure 7f, see Supplemental File 7 for detailed 
explanation), which allowed for angle measure
ments (Figure 7g).

For a trained user, the workflow takes approxi
mately 30 min per image. This workflow will allow 
one to measure the relationship between the orien
tation of the spindle axis during division and cell 
shape (elongation) and its variation between tissue 
and cell types. In addition, the possibility to mea
sure this relationship opens the possibility to 
quantify the effect of genetic or environmental 
factors with large or subtle effects on the cell divi
sion axis.

Conclusive remarks

We present here a set of seven image analysis 
workflows enabling the quantitative study of 
the spatial organization of chromosomes and 
chromatin components. The workflows cover 
applications for studies at interphase (work
flows 1, 2, 4, 6), mitosis (workflow 5, 7) or 
meiosis (workflow 3). Workflows 1, 2 and 4 
demonstrated the possibility to discover spatial 
distribution patterns, taking as examples tran
scription clusters, nuclear bodies and speckles 
and nuclear envelope-associated proteins. Such 
patterns were revealed thanks to the exploration 
of possible relationships between distance and 
intensity measurements among the different 
objects of the segmented images. Workflow 6, 
exploring genome organization at interphase, 
illustrates the quantitative power of image seg
mentation to precisely measure the spatial posi
tioning in the nuclear space and the clustering 
of telomeres and centromeres. These features 
describe different types of 3D genome organi
zation depending on cell type and species. The 
interest in performing image analysis for chro
mosome studies was further illustrated with 
workflows 3 and 5 focusing on condensed
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chromosomes at meiosis or mitosis, respec
tively. Workflow 1 demonstrates the usefulness 
of image segmentation for quantifying the 
number and distribution of crossover compo
nents on meiotic chromosomes and revealing 
the possible enrichment in relation to the 
synaptonemal complex and that of chromoso
mal regions. Workflow 5 shows that volumetric 
measurements of FISH signals enable determin
ing chromatin density (compaction) in different 
genomic regions. Finally, workflow 7 proposes 
an approach to measure the angles between 
chromosome and cell elongation axes and to 
investigate the relationship between cell divi
sion orientation and chromosomal positioning.

Image segmentation delivers a wealth of infor
mation related to signal intensity, distribution 
pattern (texture), shape, size and distance rela
tionships between segmented objects [1]. Thus, 
images become associated with many variables 
and entry types, generating big data. Those can 
either be explored in a non-hypothesis-driven 
way using multidimensional data analysis 
(Bagheri et al., 2022) or in a hypothesis-driven 
manner following a careful choice of data for 
export. Even when exporting a selective number 
of image descriptors, the analysis of replicate 
image datasets, in different conditions (treat
ments or genotypes), labeled for multiple com
ponents, quickly generates a large numerical 
dataset. Versatile data visualization interfaces 
become handy at this stage. Here, we provided 
some examples among the numerous available 
solutions. We developed a customized Shiny- 
based (shiny.rstudio.com/) data visualization 
interface, DataViz, for processing (normalizing, 
filtering), exploring and plotting intensity, mor
phology and distance measurement data 
exported from segmented images. Normali- 
zation of intensity or distance measurements 
per image is important for considering varia
tions that may arise between images during sam
ple preparation, imaging or image acquisition 
[1,12]. The examples provided here propose dif
ferent strategies depending on the image analysis 
question. Versatile data visualization greatly 
facilitates the explorative work, which in turn 
has the potential to seed discoveries, revealing

unexpected patterns or relationships and driving 
further analyses or experiments.

Although these workflows were developed to 
analyze nuclei and chromosome organization 
mostly in plant cells, these are conceptually applic
able to nuclei of other species. An example is 
shown in workflow 4 with the analysis of nuclear 
bodies in mouse embryonic stem cells. In addition, 
these image analysis workflows are expected to 
inspire cell biologists beyond the study of the 
nucleus and its constituents. For instance, trans
posed at the cellular scale, workflow 1 or 4 could 
be applied to analyze the spatial distribution of 
vesicles or cytoplasmic bodies within a cell, using 
cell segmentation modules to create the initial sur
face object (see, for instance, but not exhaustive, 
references [66–68]).

Finally, while based on a particular (commer
cial) software piece, the concept of these work
flows is expected to be transferable to other 
concurrent software offering similar image analy
sis tools (Supplementary File 8 – Table 1). One 
example is the 3D ImageJ Suite [8,10] popularized 
by the NEUBIAS COST action [8] which also 
offers a set of Fiji-based plugins for analyzing the 
spatial distribution of nuclear signals.

The increasing number of user-friendly plat
forms and the growing performance of segmen
tation algorithms greatly facilitate image 
analysis. Yet, this progress should not elude 
the need to reflect on the pertinence of the 
segmentation applied relative to the image fea
tures extracted by the process – and that will 
ultimately be interpreted in a biological context. 
Segmentation is influenced by the image qual
ity, and specific metrics have been proposed to 
control for it [69]. In addition, when establish
ing a segmentation pipeline for the first time, 
several thresholds relative, for instance, to sig
nal intensity, contrast and seed size must be 
adjusted that influence object detection. These 
thresholds influence the results in terms of the 
number, size, shape and texture of objects (dis
cussed in [1,3]). In a semi-automated, user- 
guided segmentation such as proposed here, 
how to decide on a specific threshold or cutoff 
values can be difficult (of note, this type of 
decision is similar to those met in
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bioinformatics analyses to select sequencing 
reads based on their quality, replication and 
cutoff levels). Threshold values must be justi
fied with sufficient criteria to be reproduced 
and understood by peer users. Alternatively, 
and when image quality is relatively homoge
neous in a dataset, it is possible to use values 
automatically proposed by the algorithm as 
those are usually derived from image-based sta
tistical parameters. We address this issue and 
propose solutions for each workflow in their 
detailed description (supplemental files 1–7). 
Yet, the rapid emergence of machine-learning 
(ML) based segmentation algorithms is 
expected to ease the application of optimal seg
mentation parameters, although an initial 
investment is required to train the algorithm 
with ground-truth images (discussed in [1,12]). 
Eventually, and perhaps most importantly, the 
image analysis becomes only relevant when two 
or more biological conditions are compared. 
Sample preparation and image analysis done 
in the same conditions and by the same user, 
ideally in a blind analysis design, will average 
possible technical and cognitive biases through
out the datasets. This will, in turn, allow us to 
draw relevant conclusions relative to the type 
and the order of magnitude of changes corre
lated with a treatment, a genotype or cell type, 
for a given spatial pattern describing nuclear, 
chromatin or chromosome organization.

The compendium of workflows presented 
here, with its illustrations, training images and 
detailed guidelines, aims at inspiring experimen
talists in the field of chromatin, chromosome 
and nucleus organization studies, with no or 
little expertise in image processing. This effort 
responds to the rapid development of micro
scopy imaging techniques and the needs of 
a wider community to have well documented 
and conceptually accessible image analysis tools 
[13]. Ultimately, this allows to exploit image 
data to an unprecedented level of analysis.

Note

1. https://omero.bio.fsu.edu/webclient/userdata/?experi 
menter=-1 folder IDP 3008_Randall-Baroux2022
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Introduction

Phenotypic screening – the measurement of a defined output in cells exposed to a large number of chemical compounds – is 
a vital tool in drug discovery, enabling scientists to rapidly identify potential drugs early in the discovery pipeline. 1 Live-cell 
imaging provides vastly more biological information than a single endpoint readout 2, since images reveal insight into growth 
and morphology changes of cells which are maintained within a physiologically relevant environment. Here we describe the 
application of Incucyte® Live-Cell Analysis Systems to derive insights into a library of 880 FDA-approved drugs by integrating 
data from label-free image analysis with quantification of fluorescent reporters.
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Assay Principle 

To perform the screening assay, A549 adenocarcinoma 
cells were seeded into 11 x 96-well microplates and once 
adhered, treated with a 1:1000 dilution of all compounds 
from the FDA-Approved Drugs Screening Library (Cayman 
Chemical #23538) supplied at 10 mM in DMSO (final 
concentration of all compounds 10 µM). Microplates were 
placed into Incucyte® Live-Cell Analysis Systems where 
phase contrast and fluorescence images were acquired and 
analyzed using integrated software

Incucyte® Live-Cell Imaging

To extract maximal information from each assay fluorescence 
readouts were multiplexed. In an Incucyte® SX5, A549 cells 
expressing the Incucyte® Cell Cycle Green/Orange reporter 
were combined with Incucyte® Annexin V NIR Dye; A549 
cells expressing the nuclear marker Incucyte® Nuclight NIR 
Lentivirus were multiplexed with Incucyte® Caspase 3/7 Dye 
and Incucyte® Mitochondrial Membrane Potential (MMP) 
Dye. In an Incucyte® S3, A549 cells expressing the Incucyte® 
Kinase Akt Green/Red biosensor were used. In total, this 
screen was comprised of three runs wherein 11 x 96-well 
microplates of cells were treated with 80 test compounds 
per plate, and images were acquired every 2 hours for 4 days 
resulting in over 150,000 images.

Image Analysis Insight

Figure 1: Phenotypic screening using Incucyte® Live-Cell Analysis Systems provides insight into compound mechanisms of action.
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Data Analysis and Initial Hit Identification

To achieve an overview of compound effects, an endpoint 
analysis was performed using each readout. Controls 
were included (vehicle, DMSO 0.1% and camptothecin, 
10 µM) to delineate the assay window and ensure assay 
robustness. Figure 2 displays scatter plots with each point 
representing a single concentration of each test compound 
with dashed lines indicating the mean values of the vehicle 
and appropriate controls. This visualization highlights the 
different ways in which drugs can affect cells – for example 
while a large number induce G1 arrest, many fewer are 
cytotoxic. Reporting multiple readouts can enable insight 
into the complexities of drug interactions with cells.

Appropriate time points were chosen based on the kinetic 
response of each readout. For example, time courses of % 
death showed maximal response between 48 and 72 hours 
while mitochondrial membrane and Akt kinase perturbance 
occurs within 12 hours. Cytotoxicity was quantified across all 
assay plates using Incucyte® AI Cell Health Analysis Software 
Module which segments cells and automatically performs 
label-free live|dead classification. Camptothecin was 
included as a positive control for cytotoxicity on every assay 
plate and induced an average of 79% cell death per image 
at 72 hours post treatment. Within the compound library, 39 
out of 880 compounds induced greater than 50% cell death.

Figure 2: Scatter plots display endpoint analyses used to identify hits based on individual readouts at 72h. Teal line indicates the mean vehicle control 
values and magenta line denotes mean of vehicle ±3 standard deviations. Control compounds are denoted in blue and purple.
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Cells expressing the Incucyte® Cell Cycle reporter display 
green fluorescence in S|G2|M and orange fluorescence in 
G1 stage of the cell cycle. The percentage of cells in each 
stage were quantified by classifying the fluorescence within 
the live cell population only, since dead cells exit the cell 
cycle and can skew the data. Of the compounds within the 
library, 122 induced an increase in %G1 cells that exceeded 
the vehicle mean +3 standard deviations (~50% cells in G1) 
while only 13 induced a similar increase in %S|G2|M.
Mitochondrial stress was evaluated using the Incucyte® 
Mitochondrial Membrane Potential (MMP) Assay.  
Changes in MMP alter the fluorescence intensity with 
control compound Oligomycin A inducing hyperpolarization 
(increase in Orange Mean Intensity within the cell boundary), 
while control compound FCCP induces depolarization 
(decrease in Orange Mean Intensity). 73 compounds from 
the library induced hyperpolarization while only 3 induced 
significant depolarization.

Activity of the kinase Akt was measured using cells 
expressing the Incucyte® Kinase Akt reporter. Basic 
fluorescence segmentation was used to identify the nucleus 
(red fluorescence, nuclear-restricted) and the localization 
of Akt substrate (green fluorescence) which translocates 
from the cytoplasm to the nucleus upon inhibition of 
Akt. The overlapping fluorescence masks are used to 
automatically quantify a Nuclear Translocation Ratio. In 
total 40 compounds from the library reduced the Nuclear 
Translocation Ratio below the vehicle mean –3 standard 
deviations.

Cell Growth and Cytotoxicity 

Positive control compound camptothecin induced cell death 
with the percentage of dead cells increasing from around 
24 hours post treatment, reaching a plateau after 72 hours 
(Figure 3A). In negative control (vehicle) wells, a minimal 
level of death is observed until 72 hours when cells become 
overconfluent and begin to lose viability. 

These controls were used to calculate Z’ – a recognized 
measure of assay quality in which values >0.4 indicate 
robust results suitable for single-shot screening assays– and 
highlighted strong separation between positive and negative 
control values between 48 and 72 hours. Microplate views 
display percent dead cells vs time for every well and enable 
rapid, simple visualization of compound cytotoxicity. Figure 
3B displays kinetic responses over 72 hours for all 80 test 
compounds on Plate 11 (gray, columns 2–11) and shows  
that 7 compounds on this plate induce cell death. 

The compounds included in this screening assay possess 
a wide variety of mechanisms of action, and cellular 
response can be grouped into phenotypes by examining 
the correlation between cell growth and viability. Figure 
3C displays the quantification of confluence (cell growth) 
and live cells (viability) at 3 days post-treatment with each 
point representing a single compound within the screen. 
Compounds which show results in the top right area of the 
plot (teal box) display high viability and high confluence, 
indicating that the cells grow normally and are unperturbed. 
Those compounds with results in the bottom left area of the 
plot (magenta box) display low viability and low confluence, 
indicating cytotoxic mechanisms of action. A cytostatic 
mechanism is indicated in compounds which sit in the top 
middle area since the viability of cells is high – meaning the 
compound has not induced cell death – while the confluence 
is distinctly lower than the non-perturbing compounds – 
meaning that the cell growth has been inhibited.

To examine the efficacy of the most potent cytotoxic 
compounds, a cell death assay was performed in a 384-well 
microplate using concentration ranges of camptothecin 
and the 11 compounds with highest % death at 72 hours. 
Figure 4A displays the label-free % Dead cells vs time for each 
concentration range (1 nM - 10 µM; 1:3 serial dilution) and 
provides an overview of drug efficacy. While concentration 
dependence is observed for many of the compounds, both 
Panobinostat and Bortezomib induced a high level of cell 
death even at the lowest concentration of 1 nM.

Figure 3: Data patterns indicate compound effect on cell growth and viability. Time course (A) displays % dead cells for vehicle and camptothecin; Z’ value 
reaches a maximal value between 48 and 72h. Plate view (B) shows an overview of % dead cells over time for all wells of Plate 11. Scatter plot (C) shows 
correlation between cell growth and viability at 72h.
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Figure 4: Efficacy of the 11 most toxic compounds is determined using Incucyte® AI Cell Health Analysis. Plate view displays % Dead cells versus time (A), 
and calculated compound efficacy was calculated (B). Concentration response curves are shown for topoisomerase I and II inhibitors (C).

Log EC50 values for each tested compound are shown 
in Table 4B along with the mechanisms of action which 
included topoisomerase inhibitors, kinase inhibitors, and  
20S Proteasome inhibitors. Figure 4C overlays the 
concentration response curves of the topoisomerase I and 
II inhibitors which reveals that the most potent is Idarubicin, 
and the least potent is Topotecan.

Cell death can occur via several mechanisms including 
necrosis and apoptosis – and within these are sub-types 
such as caspase-dependent versus caspase-independent 
apoptosis.3 To elicit more information on these mechanisms 
of cell death we included Incucyte® Annexin V Dye (high 
fluorescence indicates apoptosis) and Incucyte® Caspase 
3/7 Dye (high fluorescence indicates caspase-dependent 
apoptosis). Figure 5A displays the correlation between total 
cell death (x axis, AI CH % Dead), apoptosis (y axis, % Annexin 
V positive) and caspase dependence (colour scale from teal 
to magenta, % Caspase positive). The scatter plot shows 

a high correlation between total cell death and Annexin V 
(R2 = 0.95) with only 2 % of compounds diverging from this 
relationship (17 out of 880 compounds). Although many 
apoptotic compounds are caspase-positive, Sertraline 
appears to act via caspase-independent pathways. Images 
(5B) and bar graph (5C) show quantification of using 
Incucyte® AI Cell Health (top row), Incucyte®Caspase 3/7 
Dye (middle row) and Incucyte®Annexin V Dye (bottom 
row) response at 3 days post treatment. Untreated cells 
show high confluence with a small number of dead cells 
within the image, and low fluorescence response from both 
Incucyte® Caspase 3/7 and Annexin V Dyes. Camptothecin, 
a topoisomerase II inhibitor, shows a high level of cell death 
across all readouts indicating caspase-dependent apoptosis. 
Sertraline induces apoptotic cell death as indicated by AI Cell 
Health analysis and Incucyte® Annexin V response. However, 
within the dead cells the Incucyte® Caspase 3/7 intensity was 
low, indicating a caspase-independent apoptotic pathway.

Compound Target LogEC50

Camptothecin Topoisomerase I −7.1

Topotecan Topoisomerase I −5.7

Daunorubicin Topoisomerase II −6.8

Mitoxantrone Topoisomerase II −7.0

Idarubicin Topoisomerase II −7.9

Ceritinib Kinase-ALK −6.1

Vandetanib Kinase-multiple −5.3

LY2835219 Kinase-CDK 4/6 −6.0

Afatinib Kinase-ErbB family −5.7

MLN9708 20s Proteasome −6.8

Bortezomib 20s Proteasome N/C

Panobinostat Histone deacetylase N/C
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Figure 5: Cell death mechanisms can be elucidated by combining label-free analysis with fluorescence reagents. Annexin V positive and Caspase 3/7 
positive cells were identified by performing fluorescence classification. Scatter plot (A) correlates (AI Cell Health % Dead) and apoptosis (% Annexin V 
positive) and colour scale highlights caspase activating compounds (% Caspase 3/7 positive). Images (B) display AI Cell Health dead cell classification 
(magenta outline, top row), caspase 3/7 activity (green fluorescence, middle) and Annexin V binding (Near IR fluorescence, bottom row). Bar graph (C) 
indicates quantification of these responses at 72h.

Cell Cycle Arrest

To explore the effect of compounds on cell cycle progression 
cells expressing the Incucyte® Cell Cycle Lentivirus were 
used. For quantification, an initial AI Cell Health analysis 
was performed and subsequently the live cell population 
was classified according to green and orange fluorescence 
intensity to identify cells in S|G2|M and G1 respectively.  
By excluding dead cells from this analysis the data is focused 
solely on live cells which are still within the cycle.

The endpoint analysis in Figure 2 shows that while numerous 
compounds arrest the cycle in G1, very few arrest in S|G2|M. 
Further examination of the kinetic response provides 
additional insight into individual compound effects.  
Figure 6 shows the cells in G1 (orange) and S|G2|M (green) 
for untreated (vehicle) cells, as well as cells in the presence  
of Mycophenolic acid or Flumazenil.

Figure 6: Cell cycle arrest is induced by a subset of compounds. Time courses (A) show the effect of Mycophenolic acid on %G1 (top) and that of Flumazenil 
on %S|G2|M (bottom). Images (B) show healthy cell morphology in phase contrast and fluorescence within the live cell population (teal segmentation).
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Mycophenolic acid inhibits nucleotide synthesis (occurring 
in S phase), causing the cells to accumulate in G1. Figure 
6A shows that in the presence of mycophenolic acid, the 
% G1 cells (orange) increases between 24 and 72 hours. 
Flumazenil is an antagonist of GABAA receptors which 
lie upstream of several signaling pathways relating to cell 
growth. Figure 6A demonstrates that in the presence of 
Flumazenil an increase in the % S|G2|M cells is observed. 
Unlike Mycophenolic acid which induces a sustained 
increase over time in % G1, the presence of flumazenil 
induces an elevated % S|G2|M population which oscillates 
over time. This oscillation is observed when cells are treated 
with compounds which elongate mitosis and cause the cells 
to divide almost synchronously, creating peaks and troughs 
in the cell cycle populations.

Mitochondrial Membrane Potential

Mitochondrial stress is an early indicator of cell perturbance4, 
therefore the Incucyte® MMP Orange Dye was used to 
measure the effect of the compounds on mitochondrial 
membrane potential. The time course in Figure 7A quantifies 
MMP intensity within all segmented cells over time and 
shows that control compounds FCCP and Oligomycin A 
induce membrane depolarization and hyperpolarization, 
respectively. Cefdinir – a cephalosporin-based antibiotic - is 
shown to induce rapid hyperpolarization to a greater extent 
than Oligomycin A. Busulfan – a DNA alkylating agent – 
causes membrane depolarization almost as strongly as FCCP 
however the kinetic plot indicates that the depolarization 
process occurs more slowly.

Images (Figure 7B) show the fluorescence within the cell 
boundaries at 12 hours post-treatment with teal mask 
indicating live cells and magenta indicating dead cells. 
Depolarization results in loss of fluorescence intensity while 
hyperpolarization yields an increase in fluorescence intensity 
relative to vehicle, with little change in cell morphology in 
both cases. At this early timepoint (12h) minimal cell death 
is observed, and the scatter plot (Figure 7C) reveals little 
correlation between mitochondrial membrane polarization at 
12 hours and eventual cell death at 72 hours.

C. �Quantification of Reagent Response A.  Cefdinir   Oligomycin A    Vehicle   Busulfan   FCCP
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Figure 7: Perturbance of cellular mitochondrial membrane potential (MMP). 
Time course of MMP intensity (A) highlights depolarization (loss of intensity 
relative to vehicle) and hyperpolarization (increased intensity relative to 
vehicle). Images (B) show fluorescence within the cell boundaries at 12h. 
Scatter plot (C) correlates MMP at 12h with cell death at 72h.
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Akt Kinase Inhibition

Kinase signaling is a critical regulator of cell proliferation, 
metabolism, and apoptosis.5 To identify potential kinase 
inhibitors within the compound library, cells expressing the 
Incucyte® Kinase Akt biosensor were used and kinase activity 
was quantified by measuring the nuclear localization of the 
fluorescent Akt substrate (Nuclear Translocation Ratio, NTR).

Cells with inhibited Akt activity display a reduced NTR value 
and the initial hit scatter plot in Figure 2 shows that 20 out of 
880 total compounds decrease the NTR beyond 3 standard 
deviations below the mean vehicle value. However, cell 
morphology analysis reveals that some of these compounds 
induce cell rounding, meaning that the localization of 
the fluorescent Akt substrate between the nucleus and 
cytoplasm cannot be robustly determined. Cell rounding 
forces all the green fluorescence to overlap with the nucleus 
(red fluorescence). To identify Akt inhibitors more accurately 
the NTR value was plotted against cell eccentricity – a 
measure of cell elongation which decreases as cells become 
rounded. 

Figure 8: Inhibition of Akt kinase activity. Scatter plot (A) relating Nuclear Translocation Ratio (NTR) to eccentricity (Ecc) indicates positive hits for Akt 
inhibitors. Images (B) compare true inhibition by AZD 9291 to false positive Auranofin.

Figure 8A shows a correlation between eccentricity and 
NTR (black diagonal line) of cells treated with vehicle or test 
compounds; a separate control assay was performed using 
specific Akt inhibitor MK2206 and the result is included in 
blue. Compounds which induce a decreased NTR without 
rounding (gray shaded area) are “true” hits since the 
fluorescence localization can be accurately measured. 

Figure 8B displays an example of true Akt inhibition (AZD 
9291) and cell rounding (Auranofin). AZD 9291 treatment 
causes the green fluorescent Akt substrate to localize within 
the nucleus (indicated by the red outline) and the NTR is 
reduced, however the cells have a similar eccentricity value 
to vehicle. Auranofin treated cells experience a reduction 
in NTR however since the eccentricity also drops and cells 
visibly round up, this compound is discarded as a hit.
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Summary and Conclusion 

Incucyte® Live-Cell Analysis Systems were used to  
perform phenotypic screening of an 880-compound library.  
An overview of compound activity was obtained using 
endpoint analysis of images capturing multiple readouts 
including label-free cell death analysis, fluorescent apoptosis 
and mitochondrial membrane potential reagents, and 
fluorescent reporters measuring cell cycle stage and Akt 
kinase activity.

Kinetic information gained by repeated image acquisition 
within a physiologically relevant environment added insight 
into the dynamic changes which are often overlooked 
using end-point analysis alone. Additionally, by combining 
multiple readouts compound mechanisms were elucidated 
and misleading results were discarded. These data are 
reinforced with cell images throughout the time course that 
demonstrate any morphological changes yielding highly 
robust and insightful data.
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